1
|
Karimi Afshar S, Rostamzadeh F, Bigdeli MR, Mortazavi Moghadam F. Myrtenol-Loaded Fatty Acid Nanocarriers Protect Rat Brains Against Ischemia-Reperfusion Injury: Antioxidant and Anti-Inflammatory Effects. Chem Biol Drug Des 2024; 104:e14633. [PMID: 39317688 DOI: 10.1111/cbdd.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
This research investigated the preventive effects of myrtenol (MYR), fatty acid nanocarriers (FANC), and myrtenol-loaded FANC (MYR + FANC) on neurological disturbance, stroke volume, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and tumor necrosis factor-alpha (TNF-α) in the brain with ischemia-reperfusion injuries induced by middle cerebral artery occlusion (MCAO) in rats. Seventy two Wistar male rats were divided into six main groups. The groups were sham, ischemia-reperfusion group (MACO), MACO-MYR (50 mg/kg), MACO-FANC (50 and 100 mg/kg), and MACO-MYR + FANC (50 mg/kg). Stroke volume, neurological deficit scores, and the brain levels of MDA, SOD, and TNF-α were examined with TTC staining, observation, and ELISA, respectively. Pretreatment with MYR, FANC (100 mg/kg), and MYR + FANC reduced the neurological deficit score and cerebral infarction volume. MYR, FANC (100 mg/kg), and MYR + FANC pretreatment increased and decreased brain SOD and MDA levels compared to MACO group, respectively. The TNF-α level decreased in the MYR + FANC group compared to MCAO and MCAO-MYR groups in the brain. The use of FANC (100 mg/kg), MYR, and MYR + FANC has protective effects against oxidative stress and ischemia-reperfusion injury. FANC probably improve the bioavailability of MYR, as MYR+ FANC had more therapeutic effects on the reduction of ischemia-reperfusion injuries, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Shima Karimi Afshar
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Mortazavi Moghadam
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Esmaeilpour K, Jafari E, Rostamabadi F, Khaleghi M, Akhgarandouz F, Hosseini M, Najafipour H, Khodadoust M, Sheibani V, Rajizadeh MA. Myrtenol Inhalation Mitigates Asthma-Induced Cognitive Impairments: an Electrophysiological, Behavioral, Histological, and Molecular Study. Mol Neurobiol 2024; 61:4891-4907. [PMID: 38148370 DOI: 10.1007/s12035-023-03863-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Asthma is an inflammatory disorder with significant health problems. It generally affects the lungs but can also impact brain performance via several mechanisms. Some investigations have proposed that asthma impairs cognition. This study assessed the impacts of myrtenol as a monoterpene on cognitive disorders following asthma at behavioral, molecular, and synaptic levels. Asthma was induced by injection and inhalation of ovalbumin (OVA). Male Wistar rats were allocated to five groups: control, asthma, asthma/vehicle, asthma/myrtenol, and asthma/budesonide. Myrtenol (8 mg/kg) or budesonide (160 μg/kg) was administered through inhalation once a day for 1 week, and at the end of the inhalation period, behavioral tests (MWM and Open Field), field potential recording, hippocampal brain-derived neurotrophic factor (BDNF), IL1β (ELISA), and NFκB measurement (Western blot) were performed to evaluate cognitive performance. Moreover, H&E (hematoxylin and eosin) staining was used for hippocampus histological evaluation. Myrtenol improved spatial learning, memory, LTP (long-term potentiation) impairments, and anxiety-like behaviors following asthma. Myrtenol inhalation increased the BDNF level and decreased the IL1β level and NFκB expression in the hippocampus of the asthmatic rats. The neuronal damage in the hippocampus following allergic asthma was alleviated via myrtenol administration. Myrtenol, as an herbal extract, protects the hippocampus from asthma consequences. Our observations revealed that myrtenol can improve spatial learning, memory, synaptic plasticity impairments, and anxiety-like behaviors following asthma. We believe that these ameliorating effects of myrtenol can be attributed to inflammation suppression and increased BDNF in the hippocampus.
Collapse
Affiliation(s)
- Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy Department, University of Waterloo, Waterloo, ON, Canada
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mina Khaleghi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Akhgarandouz
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Hosseini
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Khodadoust
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
4
|
Ou Z, Wang Y, Yao J, Chen L, Miao H, Han Y, Hu X, Chen J. Astragaloside IV promotes angiogenesis by targeting SIRT7/VEGFA signaling pathway to improve brain injury after cerebral infarction in rats. Biomed Pharmacother 2023; 168:115598. [PMID: 37820565 DOI: 10.1016/j.biopha.2023.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Cerebral infarction (CI) has become one of the leading causes of death and acquired disability worldwide. Astragaloside IV (AST IV), one of the basic components of Astragalus membranaceus, has a protective effect on CI. However, the underlying mechanism has not been conclusively elucidated. Therefore, this study aims to explore the underlying mechanism of AST IV improving brain injury after CI. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral infarction injury in SD rats and HUVECs cells. Neurologic score, Evans blue, TTC and HE staining were used to observe brain injury in rats. Cell viability and migration were measured in vitro. Angiogenesis was detected by immunofluorescence and tube formation assay, and cell cycle was detected by flow cytometry. Western blot was used to find the expression of related proteins. Molecular docking, virtual mutation, site-directed mutagenesis, MST, and lentivirus silencing were used for target validation. The results showed that AST IV alleviated neurological impairment and promoted angiogenesis after CI. Moreover, AST IV greatly increased the transcription levels of SIRT6 and SIRT7, but had no effect on SIRT1-SIRT5, and promoted cell viability, migration, angiogenesis and S phase ratio in OGD/R-induced HUVECs. Furthermore, AST IV up-regulated the protein expressions of CDK4, cyclin D1, VEGFA and VEGF2R. Interestingly, AST IV not only bound to SIRT7, but also increased the expression of SIRT7. Silencing SIRT7 by lentivirus neutralizes the positive effects of AST IV. Taken together, the present study revealed that AST IV may improve brain tissue damage after CI by targeting SIRT7/VEGFA signaling pathway to promote angiogenesis.
Collapse
Affiliation(s)
- Zhijie Ou
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Yao
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Hong Miao
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Yang Han
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Xin Hu
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Juping Chen
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China; Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Rajizadeh MA, Khaksari M, Bejeshk MA, Amirkhosravi L, Jafari E, Jamalpoor Z, Nezhadi A. The Role of Inhaled Estradiol and Myrtenol, Alone and in Combination, in Modulating Behavioral and Functional Outcomes Following Traumatic Experimental Brain Injury: Hemodynamic, Molecular, Histological and Behavioral Study. Neurocrit Care 2023; 39:478-498. [PMID: 37100976 DOI: 10.1007/s12028-023-01720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important and growing cause of disability worldwide, and its cognitive consequences may be particularly significant. This study assessed the neuroprotective impacts of estradiol (E2), myrtenol (Myr), and the combination of the two on the neurological outcome, hemodynamic parameters, learning and memory, brain-derived neurotrophic factor (BDNF) level, phosphoinositide 3-kinases (PI3K/AKT) signaling, and inflammatory and oxidative factors in the hippocampus after TBI. METHODS Eighty-four adult male Wistar rats were randomly divided into 12 groups with seven rats in each (six groups to measure intracranial pressure, cerebral perfusion pressure, brain water content, and veterinary coma scale, and six groups for behavioral and molecular studies): sham, TBI, TBI/vehicle, TBI/Myr, TBI/E2, and TBI/Myr + E2 (Myr 50 mg/kg and E2 33.3 μg/kg via inhalation for 30 min after TBI induction). Brain injury was induced by using Marmarou's method. Briefly, a 300-g weight was dropped down from a 2-m height through a free-falling tube onto the head of the anesthetized animals. RESULTS Veterinary coma scale, learning and memory, brain water content, intracranial pressure, and cerebral perfusion pressure were impaired following TBI, and inflammation and oxidative stress were raised in the hippocampus after TBI. The BDNF level and PI3K/AKT signaling were impaired due to TBI. Inhalation of Myr and E2 had protective effects against all negative consequences of TBI by decreasing brain edema and the hippocampal content of inflammatory and oxidant factors and also by improving BDNF and PI3K/AKT in the hippocampus. Based on these data, there were no differences between alone and combination administrations. CONCLUSIONS Our results propose that Myr and E2 have neuroprotective effects on cognition impairments due to TBI.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Pathology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mahmoud RY, Trizna EY, Sulaiman RK, Pavelyev RS, Gilfanov IR, Lisovskaya SA, Ostolopovskaya OV, Frolova LL, Kutchin AV, Guseva GB, Antina EV, Berezin MB, Nikitina LE, Kayumov AR. Increasing the Efficacy of Treatment of Staphylococcus aureus- Candida albicans Mixed Infections with Myrtenol. Antibiotics (Basel) 2022; 11:1743. [PMID: 36551400 PMCID: PMC9774912 DOI: 10.3390/antibiotics11121743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by various nosocomial microorganisms affect worldwide both immunocompromised and relatively healthy persons. Bacteria and fungi have different tools to evade antimicrobials, such as hydrolysis damaging the drug, efflux systems, and the formation of biofilm that significantly complicates the treatment of the infection. Here, we show that myrtenol potentiates the antimicrobial and biofilm-preventing activity of conventional drugs against S. aureus and C. albicans mono- and dual-species cultures. In our study, the two optical isomers, (-)-myrtenol and (+)-myrtenol, have been tested as either antibacterials, antifungals, or enhancers of conventional drugs. (+)-Myrtenol demonstrated a synergistic effect with amikacin, fluconazole, and benzalkonium chloride on 64-81% of the clinical isolates of S. aureus and C. albicans, including MRSA and fluconazole-resistant fungi, while (-)-myrtenol increased the properties of amikacin and fluconazole to repress biofilm formation in half of the S. aureus and C. albicans isolates. Furthermore, myrtenol was able to potentiate benzalkonium chloride up to sixteen-fold against planktonic cells in an S. aureus-C. albicans mixed culture and repressed the adhesion of S. aureus. The mechanism of both (-)-myrtenol and (+)-myrtenol synergy with conventional drugs was apparently driven by membrane damage since the treatment with both terpenes led to a significant drop in membrane potential similar to the action of benzalkonium chloride. Thus, due to the low toxicity of myrtenol, it seems to be a promising agent to increase the efficiency of the treatment of infections caused by bacteria and be fungi of the genus Candida as well as mixed fungal-bacterial infections, including resistant strains.
Collapse
Affiliation(s)
- Ruba Y. Mahmoud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Y. Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Rand K. Sulaiman
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Roman S. Pavelyev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilmir R. Gilfanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Varnishes and Paints Department, Kazan National Research Technological University, 420015 Kazan, Russia
| | - Svetlana A. Lisovskaya
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
- Scientific Research Institute of Epidemiology and Microbiology, 420015 Kazan, Russia
| | - Olga V. Ostolopovskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Larisa L. Frolova
- Institute of Chemistry, Federal Research Center “Komi Scientific Centre”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia
| | - Alexander V. Kutchin
- Institute of Chemistry, Federal Research Center “Komi Scientific Centre”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia
| | - Galina B. Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Elena V. Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Mikhail B. Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Liliya E. Nikitina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Xiaofei L, Yan H, Yu F, Jing F, Na Z. The Role of PTEN/PI3K/AKT Signaling Pathway in Apoptosis of Liver Cells in Cocks with Manganese Toxicity. Biol Trace Elem Res 2022; 200:4444-4452. [PMID: 34802095 DOI: 10.1007/s12011-021-03039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
PTEN/PI3K/AKT signaling pathway is an important pathway for cell proliferation and apoptosis. Exposure to excess manganese (Mn) can cause damage in organisms. However, whether Mn toxicity can cause apoptosis is still not clear. In order to explore the mechanism of PTEN/PI3K/AKT signaling pathway responsible for Mn-induced apoptotic injury, 160 Hyline cocks were divided into four groups; there were the control group (Con group), the low-dose Mn group (L group), the medium-dose Mn group (M group), and the high-dose Mn group (H group). The cocks in Con group, L group, M group, and H group were fed with MnCl2 diet containing 100, 600, 900, and 1800 mg/kg, respectively. The growth status of cocks in each group was observed on days 30, 60, and 90. Thirty cocks were randomly selected from each group and sacrificed on day 90 for optical microscope observation and fluorescence microscopic observation, as well as for transcription-level expression of apoptosis-related genes and heat shock proteins (HSPs) in the liver. The results showed that the growth status of cocks was gradually depressed with the extension of feeding time and with the increase of Mn dose. On day 90, the results of optical microscope observation and fluorescence microscope observation showed that damage and apoptosis appeared in the cock liver cells under Mn exposure groups. The results of transcription-level detection of apoptosis-related genes and HSPs indicated that Mn exposure upregulated eleven pro-apoptotic genes (including RIP1, RIP3, MLKL, Bax, Caspase-3, FADD, Cyt-C, ERK, JNK, Caspase-8, and P38) and downregulated one anti-apoptotic gene Bcl-2, further meaning that exposure to Mn-induced apoptosis in cock liver cells and PTEN/PI3K/AKT signaling pathway took part in molecular mechanism of apoptosis caused by excess Mn. Moreover, in our experiment, the increase of four HSPs (including HSP27, HSP40, HSP60, and HSP70) was found after Mn treatment for 90 days, which indicated that Mn stress triggered HSPs and HSPs were involved in molecular mechanism of Mn poisoning in cock livers. In addition, we also found there was upregulated dose-dependent manner in fifteen detected genes and there was downregulated dose-dependent manner in Bcl-2, indicating that the apoptosis caused by Mn poisoning in cock liver cells was dose-dependent.
Collapse
Affiliation(s)
- Liu Xiaofei
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Hou Yan
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Fu Yu
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Jing
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China
| | - Zhang Na
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150028, People's Republic of China.
| |
Collapse
|
8
|
Rakhshan K, Sharifi M, Ramezani F, Azizi Y, Aboutaleb N. ERK/HIF-1α/VEGF pathway: a molecular target of ELABELA (ELA) peptide for attenuating cardiac ischemia-reperfusion injury in rats by promoting angiogenesis. Mol Biol Rep 2022; 49:10509-10519. [PMID: 36129600 DOI: 10.1007/s11033-022-07818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) injury is caused by a chain of events such as endothelial dysfunction. This study was conducted to investigate protective effects of ELABELA against myocardial I/R in Wistar rats and clarify its possible mechanisms. METHODS AND RESULTS: MI model was established based on the left anterior descending coronary artery ligation for 30 min. Then, 5 µg/kg of ELA peptide was intraperitoneally infused in rats once per day for 4 days. Western blot assay was used to assay the expression of t-ERK1/2, and p-ERK1/2 in different groups. The amount of myocardial capillary density, the expression levels of VEGF and HIF-1α were evaluated using immunohistochemistry assay. Masson's trichrome staining was utilized to assay cardiac interstitial fibrosis. The results showed that establishment of MI significantly enhanced cardiac interstitial fibrosis and changed p-ERK1/2/ t-ERK1/2 ratio. Likewise, ELA post-treatment markedly increased myocardial capillary density, the expression of several angiogenic factors (VEGF-A, HIF-1α), and reduced cardiac interstitial fibrosis by activation of ERK1/2 signaling pathways. CONCLUSION Collectively, ELA peptide has ability to reduce myocardial I/R injury by promoting angiogenesis and reducing cardiac interstitial fibrosis through activating ERK/HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Kamran Rakhshan
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|