1
|
Frid K, Usmann A, Markovits-Pachter T, Binyamin O, Petrou P, Kassis I, Karussis D, Gabizon R. Granagard administration prolongs the survival of human mesenchymal stem cells transplanted into a mouse model of multiple sclerosis. J Neuroimmunol 2024; 389:578313. [PMID: 38401393 DOI: 10.1016/j.jneuroim.2024.578313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
The clinical effect of human Mesenchymal stem cells (hMSCs) transplanted into EAE mice/MS patients is short lived due to poor survival of the transplanted cells. Since Granagard, a nanoformulation of pomegranate seed oil, extended the presence of Neuronal Stem cells transplanted into CJD mice brains, we tested whether this safe food supplement can also elongate the survival of hMSCs transplanted into EAE mice. Indeed, pathological studies 60 days post transplantation identified human cells only in brains of Granagard treated mice, concomitant with increased clinical activity. We conclude that Granagard may prolong the activity of stem cell transplantation in neurological diseases.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Areen Usmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Tsipora Markovits-Pachter
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Panayota Petrou
- Unit of Neuroimmunology and Cell therapies and Multiple Sclerosis Center, Hadassah-Hebrew University Hospital, Israel
| | - Ibrahim Kassis
- Unit of Neuroimmunology and Cell therapies and Multiple Sclerosis Center, Hadassah-Hebrew University Hospital, Israel
| | - Dimitri Karussis
- Medical School, The Hebrew University, Jerusalem, Israel; Unit of Neuroimmunology and Cell therapies and Multiple Sclerosis Center, Hadassah-Hebrew University Hospital, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
2
|
Li X, Zeng L, Qu Z, Zhang F. Huoxin pill protects verapamil-induced zebrafish heart failure through inhibition of oxidative stress-triggered inflammation and apoptosis. Heliyon 2024; 10:e23402. [PMID: 38169776 PMCID: PMC10758798 DOI: 10.1016/j.heliyon.2023.e23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure (HF) is a major and growing public health concern. Although advances in medical and surgical therapies have been achieved over the last decades, there is still no firmly evidence-based treatment with many traditional Chinese medicines (TCMs) for HF. Huoxin Pill (HXP), a TCM, has been widely used to treat patients with coronary heart disease and angina pectoris. However, the underlying molecular mechanism is poorly understood. In this study, using a verapamil-induced zebrafish HF model, we validated the efficacy and revealed the underlying mechanism of HXP in the treatment of HF. Zebrafish embryos were pretreated with different concentrations of HXP followed by verapamil administration, and we found that HXP significantly improved cardiac function in HF zebrafish, such as by effectively alleviating venous congestion and increasing heart rates. Mechanistically, HXP evidently inhibited verapamil-induced ROS and H2O2 production and upregulated CAT activity in HF zebrafish. Moreover, transgenic lines Tg(mpx:EGFP) and Tg(nfkb:EGFP) were administered for inflammation evaluation, and we found that neutrophil infiltration in HF zebrafish hearts and the activated NF-kB level could be reduced by HXP. Furthermore, HXP significantly downregulated the level of cell apoptosis in HF zebrafish hearts, as assessed by AO staining. Molecularly, RT‒qPCR results showed that pretreatment with HXP upregulated antioxidant-related genes such as gpx-1a and gss and downregulated the expression of the stress-related gene hsp70, proinflammatory genes such as tnf-α, il-6 and lck, and apoptosis-related indicators such as apaf1, puma and caspase9. In conclusion, HXP exerts a protective effect on verapamil-induced zebrafish HF through inhibition of oxidative stress-triggered inflammation and apoptosis.
Collapse
Affiliation(s)
- Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| |
Collapse
|
3
|
Zhang Y, Liu Q, Zhang T, Wang H, Fu Y, Wang W, Li D. The therapeutic role of Jingchuan tablet on ischaemic cerebral stroke via the HIF-1α/EPO/VEGFA signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2110-2123. [PMID: 36269045 PMCID: PMC9590438 DOI: 10.1080/13880209.2022.2134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
CONTEXT Jingchuan tablet (JCT) is a Chinese medicine prescription for treating ischaemic cerebral stroke (ICS). However, its relevant mechanisms remain unclear. OBJECTIVE To unravel the intrinsic mechanisms of JCT anti-ICS. MATERIALS AND METHODS 'Hongjingtian', 'chuanxiong', 'yanhusuo', 'bingpian', 'cerebral infarction', 'cerebral ischemia' or 'stroke' were used as keywords, and then components, targets and underlying mechanisms of JCT anti-ICS were analysed in TCMSP, TTD, DrugBank, STRING and Metascape databases up to June 2020. Male Sprague-Dawley rats under permanent middle cerebral artery occlusion (pMCAO) model, randomly assigned as: model, sham, nimodipine (0.012 g/kg/d) and JCT (0.78, 1.56 and 3.12 g/kg/d) groups, received oral gavage administration for a week. Therapeutic effects were evaluated by detecting the proportion of cerebral infarction, neuronal apoptosis and neurological deficits. Bioactive components were detected by HPLC-MS. Molecular biology and computational docking were used to verify the underlying mechanisms. RESULTS Eighty-one components, 166 targets and HIF-1α/EPO/VEGFA pathway contributed to the anti-ICS effect of JCT. JCT treatment effectively reduced the proportion of cerebral infarction (33.13%), apoptosis rate (14.80%) and neurobehavioural score (2.00). JCT increased the protein levels of HIF-1α (0.84), EPO (0.64) and VEGFA (0.69), respectively (p < 0.05). Gallic acid, salidroside, chlorogenic acid, ethyl gallate, ferulic acid and tetrahydropalmatine detected by HPLC-MS showed good interaction and binding with HIF-1α/EPO/VEGFA. CONCLUSIONS Our study demonstrated the mechanisms of JCT anti-ICS associated with the activation of the HIF-1α/EPO/VEGFA pathway, which provided a pharmacological basis for expanding the clinical application and some scientific ideas for further research into the material basis JCT anti-ICS.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Qinghuan Liu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Ting Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Hong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Wentong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| |
Collapse
|
4
|
Mechanism of Danhong Injection in the Treatment of Arrhythmia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4336870. [PMID: 35915792 PMCID: PMC9338864 DOI: 10.1155/2022/4336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Background. Danhong injection (DHI) is widely used in the treatment of cardiovascular and cerebrovascular diseases, and its safety and effectiveness have been widely recognized and applied in China. However, the potential molecular mechanism of action for the treatment of arrhythmia is not fully understood. Aim. In this study, through network pharmacology and in vitro cell experiments, we explored the active compounds of DHI for the treatment of arrhythmia and predicted the potential targets of the drug to investigate its mechanism of action. Materials and Methods. First, the potential therapeutic effect of DHI on arrhythmia was investigated in an in vitro arrhythmia model using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), in which calcium transients were recorded to evaluate the status of arrhythmia. Next, the active compounds and key targets in the treatment of arrhythmia were identified through network pharmacology and molecular docking, and the key signaling pathways related to the treatment of arrhythmia were analyzed. Furthermore, we used real-time quantitative reverse transcription PCR (qRT–PCR) to verify the expression levels of key genes. Results. Early afterdepolarizations (EADs) were observed during aconitine treatment in hiPSC-CMs, and the proarrhythmic effect of aconitine was partially rescued by DHI, indicating that the antiarrhythmic role of DHI was verified in an in vitro human cardiomyocyte model. To further dissect the underlying molecular basis of this observation, network pharmacology analysis was performed, and the results showed that there were 108 crosstargets between DHI and arrhythmia. Moreover, 30 of these targets, such as AKT1 and HMOX1, were key genes. In addition, the mRNA expression of AKT1 and HMOX1 could be regulated by DHI. Conclusion. DHI can alleviate aconitine-induced arrhythmia in an in vitro model, presumably because of its multitarget regulatory mechanism. Key genes, such as AKT1 and HMOX1, may contribute to the antiarrhythmic role of DHI in the heart.
Collapse
|
5
|
Che YH, Xu ZR, Ni LL, Dong XX, Yang ZZ, Yang ZB. Isolation and identification of the components in Cybister chinensis Motschulsky against inflammation and their mechanisms of action based on network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114851. [PMID: 34808299 DOI: 10.1016/j.jep.2021.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cybister chinensis Motschulsky belongs to the family Dytiscidae. As a traditional Chinese medicine, the insect is called Longshi in the folk and is commonly used to treat enuresis in children and frequent urination in the elderly. AIM OF THE STUDY Inflammation is involved in chronic kidney disease. The previous study proved ethanol extract of C. chinensis exhibited anti-inflammation effects in the Doxorubicin-induced kidney disease. However, the material basis and their possible mechanism of the insect were still unclear. Thus, we aimed to separate the active compounds of the ethanol extract from C. chinensis and to investigate their possible mechanism of anti-inflammation by network pharmacology and molecular docking. MATERIALS AND METHODS The insect was extracted with 75% ethanol to produce ethanol extracts and then were extracted by petroleum ether, ethyl acetate and n-butanol respectively. Silica gel column chromatography and preparative HPLC were applied to separate the compounds of the extract. The compounds were characterized and identified by NMR and mass. The compound associated genes were collected by BATMAN-TCM database and the inflammation associated genes were obtained through DigSee database. The protein-protein interaction (PPI) network was carried out via Search Tool for the Retrieval of Interacting Genes/Protein (STRING) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) target pathway analysis was performed in Database for Annotation, Visualization and Integrated Discovery (DAVID). The possible mechanism of compounds against inflammation was investigated by molecular docking. Finally, the anti-inflammatory effect of the representative compound was verified by the LPS-induced Raw 264.7 cell inflammatory model. TNF-α, IL-1β and IL-6 of the cell supernatants were analyzed via using ELISA kits and the key proteins in JAK2/STAT3 signaling pathway were verified via the Western blot assays. RESULTS Among crude extracts from C. chinensis, ethyl acetate extract showed the obvious anti-inflammatory effects. Nine compounds were isolated from ethyl acetate extract of Cybister chinensis for the first time, including benzoic acid (1), hydroxytyrosol (2), protocatechualdehyde (3), N-[2-(4-hydroxyphenyl)ethyl]acetamide (4), (2E)-3-phenylprop-2-enoic acid (5), 3-phenylpropionic acid (6), methyl 3,4-dihydroxybenzoate (7), 1,4-diphenyl butane-2,3-diol (8) and p-N,N-dimethylaminobenzaldehyde (9). After searching in the database, 1079 compound associated genes and 467 inflammation associated genes were found. The 137 common targets covered 77 signaling pathways, in which HIF-1 signaling pathway, TNF signaling pathway, influenza A, PI3K/Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and Jak-STAT signaling pathway were important for inflammation. Molecular docking studies showed compound 1, 4, 5, 6, 7 and 8 were the potential inhibitors of JAK2 protein. In addition, the in vitro test showed compound 5 reduced the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner. Furthermore, it was found that compound 5 inhibited the expression of p-JAK2 and p-STAT3 in LPS-induced RAW264.7 cells in a dose-dependent manner. CONCLUSIONS Based on the network pharmacology and molecular docking, the study suggested that C. chinensis could relieve the inflammation based on the multi-compounds and multi-pathways, which provided the foundation for the medicinal application of C. chinensis.
Collapse
Affiliation(s)
- Yi-Hao Che
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Ren Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lian-Li Ni
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin-Xin Dong
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhi-Bin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|