1
|
Bao Y, Ge YM, Wang Z, Wang HY, Wang Q, Yuan J. Safranal Ameliorates Renal Damage, Inflammation, and Podocyte Injury in Membranous Nephropathy via SIRT/NF-κB Signalling. Curr Med Sci 2025:10.1007/s11596-025-00020-8. [PMID: 40035996 DOI: 10.1007/s11596-025-00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVE Safranal is a natural product from saffron (Crocus sativus L.) with anti-inflammatory and nephroprotective potential. This study aimed to explore the role of safranal in a cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis (MGN). METHODS After model establishment, Sprague-Dawley rats were administered 100 or 200 mg/kg safranal by gavage. A biochemical analyser was used to measure the urine protein levels and serum levels of renal function parameters. Hematoxylin-eosin and immunofluorescence staining of kidney tissues were performed to examine histopathological changes and assess the expression of IgG, C3, and Sirt1. Western blotting was performed to measure the protein levels of podocin, nephrin, Sirt1, and factors involved in the NF-κB/p65 pathway. Inflammatory cytokine levels in renal homogenates were determined by ELISA. RESULTS Safranal at 100 or 200 mg/kg reduced kidney weight (2.07 ± 0.15 g and 2.05 ± 0.15 g) and the kidney somatic index (0.83 ± 0.08% and 0.81 ± 0.08%) in MGN rats compared with those in the model group without drug administration (2.62 ± 0.17 g and 1.05 ± 0.1%). C-BSA increased the urine protein level to 117.68 ± 10.52 mg/day (compared with the sham group, 5.03 ± 0.45 mg/day), caused dysregulation of renal function indicators, and induced glomerular expansion and inflammatory cell infiltration in the rat kidney samples. All the biochemical and histological changes were improved by safranal administration. Safranal at two doses also increased the fluorescence intensities of IgG (0.1 ± 0.009 and 0.088 ± 0.008) and C3 (0.065 ± 0.006 and 0.048 ± 0.004) compared with those in the MGN group (0.15 ± 0.013 and 0.086 ± 0.008). Additionally, safranal reversed the downregulation of podocin, nephrin, and Wilms tumor protein-1 (WT1) levels and reversed the high inflammatory cytokine levels in MGN rats. Mechanistically, safranal activated Sirt1 signalling to interfere with NF-κB signalling in the kidney tissues of MGN rats. CONCLUSIONS Safranal ameliorates renal damage, inflammation, and podocyte injury in MGN by upregulating SIRT1 and inhibiting NF-κB signalling.
Collapse
Affiliation(s)
- Yan Bao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ya-Mei Ge
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zheng Wang
- BSc Biochemistry, University College London, London, WCIE 6BT, UK
| | - Hong-Yun Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qiong Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Jia S, Si R, Liu G, Zhong Q. Diosgenin protects against cationic bovine serum albumin-induced membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway. PHARMACEUTICAL BIOLOGY 2024; 62:285-295. [PMID: 38516898 PMCID: PMC10962310 DOI: 10.1080/13880209.2024.2330602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
CONTEXT Membranous glomerulonephritis (MGN) is a leading cause of nephrotic syndrome in adults. Diosgenin (DG) has been reported to exert antioxidative and anti-inflammatory effects. OBJECTIVE To investigate the renoprotective activity of DG in a cationic bovine serum albumin-induced rat model of MGN. MATERIALS AND METHODS Fourty male Sprague-Dawley rats were randomized into four groups. The MGN model was established and treated with a DG dose (10 mg/kg) and a positive control (TPCA1, 10 mg/kg), while normal control and MGN groups received distilled water by gavage for four consecutive weeks. At the end of the experiment, 24 h urinary protein, biochemical indices, oxidation and antioxidant levels, inflammatory parameters, histopathological examination, immunohistochemistry and immunoblotting were evaluated. RESULTS DG significantly ameliorated kidney dysfunction by decreasing urinary protein (0.56-fold), serum creatinine (SCr) (0.78-fold), BUN (0.71-fold), TC (0.66-fold) and TG (0.73-fold) levels, and increasing ALB (1.44-fold). DG also reduced MDA (0.82-fold) and NO (0.83-fold) levels while increasing the activity of SOD (1.56-fold), CAT (1.25-fold), glutathione peroxidase (GPx) (1.55-fold) and GSH (1.81-fold). Furthermore, DG reduced Keap1 (0.76-fold) expression, Nrf2 nuclear translocation (0.79-fold), and induced NQO1 (1.25-fold) and HO-1 (1.46-fold) expression. Additionally, DG decreased IL-2 (0.55-fold), TNF-α (0.80-fold) and IL-6 (0.75-fold) levels, and reduced protein expression of NF-κB p65 (0.80-fold), IKKβ (0.93-fold), p-IKKβ (0.89-fold), ICAM-1 (0.88-fold), VCAM-1 (0.91-fold), MCP-1 (0.88-fold) and E-selectin (0.87-fold), and also inhibited the nuclear translocation of NF-κB p65 (0.64-fold). DISCUSSION AND CONCLUSIONS The results suggest a potential therapeutic benefit of DG against MGN due to the inhibition of the NF-κB pathway, supporting the need for further clinical trials.
Collapse
Affiliation(s)
- Shiyan Jia
- Department of Anesthesiology, Anesthesia and Trauma Research Unit, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Ruihua Si
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Guangzhen Liu
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Qiming Zhong
- Department of Nephrology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| |
Collapse
|
3
|
Li XJ, Wang YN, Wang WF, Nie X, Miao H, Zhao YY. Barleriside A, an aryl hydrocarbon receptor antagonist, ameliorates podocyte injury through inhibiting oxidative stress and inflammation. Front Pharmacol 2024; 15:1386604. [PMID: 39239643 PMCID: PMC11374728 DOI: 10.3389/fphar.2024.1386604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Increasing evidence shows that hyperactive aryl hydrocarbon receptor (AHR) signalling is involved in renal disease. However, no currently available intervention strategy is effective in halting disease progression by targeting the AHR signalling. Our previous study showed that barleriside A (BSA), a major component of Plantaginis semen, exhibits renoprotective effects. Methods In this study, we determined the effects of BSA on AHR expression in 5/6 nephrectomized (NX) rats. We further determined the effect of BSA on AHR, nuclear factor kappa B (NF-ƙB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signalling cascade in zymosan-activated serum (ZAS)-stimulated MPC5 cells. Results BSA treatment improved renal function and inhibited intrarenal nuclear AHR protein expression in NX-treated rats. BSA mitigated podocyte lesions and suppressed AHR mRNA and protein expression in ZAS-stimulated MPC5 cells. BSA inhibited inflammation by improving the NF-ƙB and Nrf2 pathways in ZAS-stimulated MPC5 cells. However, BSA did not markedly upregulate the expression of podocyte-specific proteins in the ZAS-mediated MPC5 cells treated with CH223191 or AHR siRNA compared to untreated ZAS-induced MPC5 cells. Similarly, the inhibitory effects of BSA on nuclear NF-ƙB p65, Nrf2, and AHR, as well as cytoplasmic cyclooxygenase-2, heme oxygenase-1, and AHR, were partially abolished in ZAS-induced MPC5 cells treated with CH223191 or AHRsiRNA compared with untreated ZAS-induced MPC5 cells. These results indicated that BSA attenuated the inflammatory response, partly by inhibiting AHR signalling. Discussion Both pharmacological and siNRA findings suggested that BSA mitigated podocyte lesions by improving the NF-ƙB and Nrf2 pathways via inhibiting AHR signalling. Therefore, BSA is a high-affinity AHR antagonist that abolishes oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liu T, Wang ZJ, Shi YZ, Tao R, Huang H, Zhao YL, Luo XD. Curcusinol from the fruit of Carex baccans with antibacterial activity against multidrug-resistant strains. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116892. [PMID: 37460030 DOI: 10.1016/j.jep.2023.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carex baccans, known as Shan-Bai-Zi or Ye-Gao-Liang in China, is a traditional medicinal herb used by several ethnic groups in Yunnan Province. It is utilized for the treatment of wound infections, ulcers, and dysentery. However, there is currently a dearth of research reports on its antimicrobial potential. AIM OF THE STUDY The substance basis of the antimicrobial activity of C. baccans will be unveiled, and the in vitro and in vivo antibacterial activities against multidrug-resistant bacteria of its major active compounds, as well as their preliminary mechanisms of action, will be investigated. MATERIALS AND METHODS An antibacterial bioactivity-guided isolation method was used to isolate and identify the active compound curcusinol from C. baccans. UPLC-DAD-MS was employed for the quantitative analysis of curcusinol. The antibacterial activity, resistance profile, synergistic effects, anti-biofilm activity, and potential mechanisms of action of curcusinol against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and other multidrug-resistant bacteria (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii) were investigated using various methods, including the broth microdilution method, scanning electron microscopy, time kill assay, multi-generational resistance induction assay, checkerboard synergy assay, anti-biofilm assay, and metabolomics. Furthermore, the therapeutic efficacy of curcusinol was assessed in vivo by establishing an animal skin wound infection model of MRSA. RESULTS Curcusinol was isolated from the fruit of C. baccans, which accounts for 3.1% of the dry weight of the fruit. Curcusinol exhibited significant bactericidal and anti-biofilm activities against antibiotic-resistant Gram-positive bacteria in vitro. Furthermore, curcusinol acted as an antibiotic adjuvant to enhance the activity of various commonly used antibiotics against both Gram-positive and Gram-negative antibiotic-resistant bacteria without cytotoxicity to mammalian cells (A549 and RAW264.7) at 64 μM. Moreover, curcusinol affected arginine biosynthesis, cysteine and methionine metabolism, and alanine, aspartate, and glutamate metabolism significantly in MRSA cells under stress. Additionally, curcusinol effectively treated MRSA-infected mouse skin wounds and accelerated wound healing in vivo. CONCLUSIONS The results of this study not only support the traditional uses of C. baccans but also demonstrate that its major active compound, curcusinol, is an effective plant-derived bactericidal agent and antibacterial adjuvant with potential applications in the treatment of skin infections.
Collapse
Affiliation(s)
- Tie Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Yang-Zhu Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Ran Tao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Huan Huang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
5
|
Miao H, Wang YN, Yu XY, Zou L, Guo Y, Su W, Liu F, Cao G, Zhao YY. Lactobacillus species ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon receptor pathway via tryptophan-produced indole metabolites. Br J Pharmacol 2024; 181:162-179. [PMID: 37594378 DOI: 10.1111/bph.16219] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Yan Guo
- Department of Public Health and Sciences, University of Miami, Miami, Florida, USA
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Wang X, Dong Y, Bao Z, Lin S. Acidic Stigma maydis polysaccharides protect against podocyte injury in membranous nephropathy by maintenance of glomerular filtration barrier integrity and gut-kidney axis. Food Funct 2022; 13:11794-11810. [DOI: 10.1039/d2fo02652j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MN mice models were induced by C-BSA, and we found that acidic stigma maydis polysaccharides maintained the integrity of the glomerular filtration barrier by promoting slit diaphragm proteins expression and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xizhu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yifei Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| |
Collapse
|