1
|
Li Y, Li S, Shou Z, Li Y, Li A, Liu W, Zhang X, Zhou C, Xu D, Li L. Integration of network pharmacology with experimental validation to reveal the mechanism of action of Longdan Xiegan Decoction against HSV2 infection and determine its effective components. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117861. [PMID: 38316223 DOI: 10.1016/j.jep.2024.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has made enormous strides recently in the discovery of anti-herpes simplex virus (HSV) drugs under the guidance of TCM theory. Longdan Xiegan Decoction (LXD), a formulation recorded in the Pharmacopoeia of the People's Republic of China, has proved to be effective against HSV infection. However, its effective components and action mechanism remain unclear. AIM OF THE STUDY To investigate the effective components and mechanisms of LXD in treating HSV infection based on network pharmacology and experimental validation. MATERIALS AND METHODS The anti-HSV activities of key compounds predicted by network analysis were detected by antiviral tests. High-performance liquid chromatography (HPLC) was applied to identify the main components of the LXD aqueous extract. Time-of-addition assay and infectivity inhibition reversibility assay were conducted to identify the potential antiviral mechanisms of licochalcone B (LCB). Additionally, we assessed the antiviral effect of LCB in vivo by use of body weight, viral load, histological analysis, and scoring of genital lesions in an HSV2-infected mouse model. RESULTS Our data demonstrated that some components exhibited significant anti-HSV1/2 activity in vitro, including quercetin, kaempferol, wogonin, formononetin, naringenin, baicalein, isorhamnetin, glabridin, licochalcone A, echinatin, oroxylin A, isoliquiritigenin, pinocembrin, LCB and acacetin. HPLC analysis showed that LCB was the main component of LXD aqueous extract. In vitro experiments revealed that LCB not only inactivated HSV2 particles, but also inhibited HSV2 multiplication through the inhibition of the phosphorylation of Akt and its downstream targets. In vivo experiments confirmed that LCB could significantly reduce viral titer, delay weight loss, and alleviate pathological changes in vaginal tissue in vaginal infection mouse models. CONCLUSION LCB acted as the main component of LXD, with significant anti-HSV2 infection effects both in vivo and in vitro. This study provides additional evidence of the healing efficacy of LXD against HSV infection and presents an efficient analytical method for further investigation of the mechanisms of TCM in prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuyun Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China
| | - Siyan Li
- Department of Rehabilitation Medicine, Guangzhou Xinhua University, Guangzhou, 510520, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeren Shou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yibin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Axin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenli Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chengliang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Daohua Xu
- Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China.
| | - Lin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Wang W, Jin X, Shao Q, Liu T, Liu T, Zhao X, Xu L, Gao W, Hu L, Chen Z. The Chinese herbal prescription JZ-1 promotes extracellular vesicle production and protects against herpes simplex virus type 2 infection in vitro. Heliyon 2024; 10:e27019. [PMID: 38495169 PMCID: PMC10940933 DOI: 10.1016/j.heliyon.2024.e27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Genital herpes, primarily caused by HSV-2 infection, remains a widespread sexually transmitted ailment. Extracellular vesicles play a pivotal role in host-virus confrontation. Recent research underscores the influence of Chinese herbal prescriptions on extracellular vesicle production and composition. This study aims to probe the impact of JieZe-1 (JZ-1) on extracellular vesicle components, elucidating its mechanisms against HSV-2 infection via extracellular vesicles. Methods The JZ-1's anti-HSV-2 effects were assessed using CCK-8 assay. Extracellular vesicles were precisely isolated utilizing ultracentrifugation and subsequently characterized through TEM, NTA, and Western Blot analyses. The anti-HSV-2 activity of extracellular vesicles was gauged using CCK-8, Western Blot, and immunofluorescence. Additionally, high-throughput sequencing was employed to detect miRNAs from extracellular vesicles, unraveling the potential antiviral mechanisms of JZ-1. Results Antiviral efficacy of JZ-1 was shown in VK2/E6E7, HeLa, and Vero cells. The samples extracted from cell supernatant by ultracentrifugation were identified as extracellular vesicles. In VK2/E6E7 cells, extracellular vesicles from JZ-1 group enhanced cell survival rates and diminished the expression of intracellular viral protein gD, contrasting with the inert effect of control group vesicles. Extracellular vesicles from JZ-1 treated Vero cells demonstrated a weaker yet discernible anti-HSV-2 effect. Conversely, extracellular vesicles of HeLa cells exhibited no anti-HSV-2 effect from either group. High-throughput sequencing of VK2/E6E7 cell extracellular vesicles unveiled significant upregulation of miRNA-101, miRNA-29a, miRNA-29b, miRNA-29c, and miRNA-637 in JZ-1 group vesicles. KEGG pathway analysis suggested that these miRNAs may inhibit PI3K/AKT/mTOR signaling pathway and induce autophagy of host cells to protect against HSV-2. Western blot confirmed the induction of autophagy and inhibition of AKT/mTOR in VK2/E6E7 cells with JZ-1 group extracellular vesicles treatment. Conclusion JZ-1 had an anti-HSV-2 efficacy. After JZ-1 stimulation, VK2/E6E7 cells secreted extracellular vesicles which protect host cells from HSV-2 infection. High-throughput sequencing showed that these extracellular vesicles contained a large number of miRNAs targeting PI3K/AKT/mTOR pathway. JZ-1 group extracellular vesicles could inhibit the activation of AKT/mTOR pathway and induce the host cells autophagy.
Collapse
Affiliation(s)
- Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Gao
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Yan H, Wang J, Yang J, Xu Z, Li C, Hao C, Wang S, Wang W. Inhibition Effects and Mechanisms of Marine Polysaccharide PSSD against Herpes Simplex Virus Type 2. Mar Drugs 2023; 21:364. [PMID: 37367689 DOI: 10.3390/md21060364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Genital herpes is a common sexually transmitted disease mainly caused by herpes simplex virus type 2 (HSV-2), which can increase the risk of HIV transmission and is a major health problem in the world. Thus, it is of great significance to develop new anti-HSV-2 drugs with high efficiency and low toxicity. In this study, the anti-HSV-2 activities of PSSD, a marine sulfated polysaccharide, was deeply explored both in vitro and in vivo. The results showed that PSSD had marked anti-HSV-2 activities in vitro with low cytotoxicity. PSSD can directly interact with virus particles to inhibit the adsorption of virus to the cell surface. PSSD may also interact with virus surface glycoproteins to block virus-induced membrane fusion. Importantly, PSSD can significantly attenuate the symptoms of genital herpes and weight loss in mice after gel smear treatment, as well as reducing the titer of virus shedding in the reproductive tract of mice, superior to the effect of acyclovir. In summary, the marine polysaccharide PSSD possesses anti-HSV-2 effects both in vitro and in vivo, and has potential to be developed into a novel anti-genital herpes agent in the future.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiayi Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhongqiu Xu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266100, China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266100, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
4
|
Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:277-288. [PMID: 36973158 DOI: 10.1016/j.joim.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/19/2022] [Indexed: 03/11/2023]
Abstract
OBJECTIVE JieZe-1 (JZ-1), a Chinese herbal prescription, has an obvious effect on genital herpes, which is mainly caused by herpes simplex virus type 2 (HSV-2). Our study aimed to address whether HSV-2 induces pyroptosis of VK2/E6E7 cells and to investigate the anti-HSV-2 activity of JZ-1 and the effect of JZ-1 on caspase-1-dependent pyroptosis. METHODS HSV-2-infected VK2/E6E7 cells and culture supernate were harvested at different time points after the infection. Cells were co-treated with HSV-2 and penciclovir (0.078125 mg/mL) or caspase-1 inhibitor VX-765 (24 h pretreatment with 100 μmol/L) or JZ-1 (0.078125-50 mg/mL). Cell counting kit-8 assay and viral load analysis were used to evaluate the antiviral activity of JZ-1. Inflammasome activation and pyroptosis of VK2/E6E7 cells were analyzed using microscopy, Hoechst 33342/propidium iodide staining, lactate dehydrogenase release assay, gene and protein expression, co-immunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay. RESULTS HSV-2 induced pyroptosis of VK2/E6E7 cells, with the most significant increase observed 24 h after the infection. JZ-1 effectively inhibited HSV-2 (the 50% inhibitory concentration = 1.709 mg/mL), with the 6.25 mg/mL dose showing the highest efficacy (95.76%). JZ-1 (6.25 mg/mL) suppressed pyroptosis of VK2/E6E7 cells. It downregulated the inflammasome activation and pyroptosis via inhibiting the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (P < 0.001) and interferon-γ-inducible protein 16 (P < 0.001), and their interactions with apoptosis-associated speck-like protein containing a caspase recruitment domain, and reducing cleaved caspase-1 p20 (P < 0.01), gasdermin D-N (P < 0.01), interleukin (IL)-1β (P < 0.001), and IL-18 levels (P < 0.001). CONCLUSION JZ-1 exerts an excellent anti-HSV-2 effect in VK2/E6E7 cells, and it inhibits caspase-1-dependent pyroptosis induced by HSV-2 infection. These data enrich our understanding of the pathologic basis of HSV-2 infection and provide experimental evidence for the anti-HSV-2 activity of JZ-1. Please cite this article as: Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qing-Qing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wen-Jia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Tian-Li Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xi-Ming Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Jun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Guang-Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|