1
|
Papantoniou K, Aggeletopoulou I, Michailides C, Pastras P, Triantos C. Understanding the Role of NLRP3 Inflammasome in Acute Pancreatitis. BIOLOGY 2024; 13:945. [PMID: 39596901 PMCID: PMC11592098 DOI: 10.3390/biology13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Acute pancreatitis (AP) remains a serious clinical condition, with current treatment options being largely supportive. The discovery of inflammasomes, particularly the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, has significantly advanced our knowledge regarding many inflammatory diseases' pathogenesis, including AP. The NLRP3 inflammasome is central in mediating the inflammatory process in AP through its diverse activation mechanisms and its involvement in multiple signal transduction pathways. This has made NLRP3 an appealing target for novel therapeutic strategies aimed at modulating inflammation in AP. Despite the growing interest in NLRP3 as a therapeutic target, there remains a notable gap in clinical research, with few clinical trials exploring the efficacy of NLRP3 inhibitors in AP. Results of several preclinical studies and animal models are promising and suggest that the use of NLRP3 inhibitors could result in reduced inflammation and improved patient outcomes in AP. Further research is urgently needed to assess their potential benefits, safety, and applicability in human patients and address the underlying inflammatory processes driving AP.
Collapse
Affiliation(s)
- Konstantinos Papantoniou
- Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (K.P.); (C.M.)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (P.P.)
| | - Christos Michailides
- Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (K.P.); (C.M.)
| | - Ploutarchos Pastras
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (P.P.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (P.P.)
| |
Collapse
|
2
|
Khamis AA, Sharshar AH, Mohamed TM, Abdelrasoul EA, Salem MM. Visnagin alleviates rheumatoid arthritis via its potential inhibitory impact on malate dehydrogenase enzyme: in silico, in vitro, and in vivo studies. GENES & NUTRITION 2024; 19:20. [PMID: 39390383 PMCID: PMC11465529 DOI: 10.1186/s12263-024-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder. The present study aimed to evaluate the in silico, in vitro, and in vivo inhibitory effect of visnagin on malate dehydrogenase activity and elucidate its inflammatory efficacy when combined with methotrexate in the RA rat model. The molecular docking, ADMET simulations, MDH activity, expression, and X-ray imaging were detected. Moreover, CRP, RF, (anti-CCP) antibody, (TNF-α), (IL-6), (IL-17), and (IL-10) were evaluated. The expression levels of MMP3 and FOXP3 genes and CD4, CD25, and CD127 protein levels were assessed. Histological assessment of ankle joints was evaluated. The results revealed that visnagin showed reversible competitive inhibition on MDH with inhibitory constant (Ki) equal to 141 mM with theoretical IC50 equal to 1202.7 mM, LD50 equal to 155.39 mg/kg, and LD25 equal to 77.69 mg/kg. In vivo studies indicated that visnagin exhibited anti-inflammatory effects through decreasing MDH1 activity and expression and induced proliferation of anti-inflammatory CD4+CD25+FOXP3 regulatory T cells with increasing the anti-inflammatory cytokine IL-10 levels. Moreover, visnagin reduced the levels of inflammatory cytokines and the immuno-markers. Our findings elucidate that visnagin exhibits an anti-inflammatory impact against RA through its ability to inhibit the MDH1 enzyme, improve methotrexate efficacy, and reduce oxidative stress.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Amira H Sharshar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Elsayed A Abdelrasoul
- Head Researcher of Special Food and Nutrition Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
4
|
Chegini M, Sadeghi A, Zaeri F, Zamani M, Hekmatdoost A. Nano-curcumin supplementation in patients with mild and moderate acute pancreatitis: A randomized, placebo-controlled trial. Phytother Res 2023; 37:5279-5288. [PMID: 37490939 DOI: 10.1002/ptr.7958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
We aimed to investigate whether nano-curcumin as an anti-inflammatory agent is effective in patients with mild and moderate AP. This study was a double-blind, parallel-arm randomized controlled trial conducted at Taleghani hospital, Tehran, Iran. Eligible subjects with a diagnosis of mild and moderate AP were randomly assigned to receive either two doses of nano-curcumin (40 mg) or placebo (control) daily for 2 weeks. The primary endpoint was gastrointestinal (GI) ward length of stay (LOS). A total of 42 patients were randomly assigned to receive either nano-curcumin (n = 21) or placebo (n = 21). Compared with placebo, nano-curcumin supplementation decreased hospital LOS (RR = 0.67, 95% CI: 0.502-0.894; p = 0.006), reduced the need for analgesics over time (OR = 0.576, 95% CI: 0.421-0.790; p = 0.001), and increased overall appetite score over the study period (β = 0.104, SE: 0.053; p = 0.049). No adverse effects or mortality were reported and there was no withdrawal during the study period. The results indicate that nano-curcumin as an adjuvant therapy is safe and may reduce GI ward LOS, analgesics requirement, and improve the overall appetite in patients with mild and moderate AP. Future multi-center trials with larger sample sizes are required to verify these findings. Clinical trial registration: www.ClinicalTrials.gov NCT04989166.
Collapse
Affiliation(s)
- Maedeh Chegini
- Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, School of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Zaeri
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Zamani
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, School of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhao Y, Xia W, Lu Y, Chen W, Zhao Y, Zhuang Y. Predictive value of the C-reactive protein/albumin ratio in severity and prognosis of acute pancreatitis. Front Surg 2023; 9:1026604. [PMID: 36704518 PMCID: PMC9871615 DOI: 10.3389/fsurg.2022.1026604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Aim To investigate the predictive value of C-reactive protein (CRP) to serum albumin (ALB) ratio in the severity and prognosis of acute pancreatitis (AP), and compare the predictive value of the CRP/ALB ratio with the Ranson score, modified computed tomography severity index (MCTSI) score, and Bedside Index of Severity in Acute Pancreatitis (BISAP) score. Methods This cohort study retrospectively analyzed clinical data of AP patients from August 2018 to August 2020 in our hospital. Logistic regression analysis was utilized to determine the effects of CRP/ALB ratio, Ranson, MCTSI, and BISAP score on severe AP (SAP), pancreatic necrosis, organ failure, and death. The predictive values of CRP/ALB ratio, Ranson, MCTSI, and BISAP score were examined with the area under the curve (AUC) of the receiver operator characteristic (ROC) curve analysis. DeLong test was used to compare the AUCs between CRP/ALB ratio, Ranson, MCTSI, and BISAP score. Results Totally, 284 patients were included in this study, of which 35 AP patients (12.32%) developed SAP, 29 (10.21%) organ failure, 30 (10.56%) pancreatic necrosis and 11 (3.87%) died. The result revealed that CRP/ALB ratio on day 2 was associated with SAP [odds ratio (OR): 1.74, 95% confidence interval (CI): 1.32 to 2.29], death (OR: 1.73, 95%CI: 1.24 to 2.41), pancreatic necrosis (OR: 1.28, 95%CI: 1.08 to 1.50), and organ failure (OR: 1.43, 95%CI: 1.18 to 1.73) in AP patients. Similarly, CRP/ALB on day 3 was related to a higher risk of SAP (OR: 1.50, 95%CI: 1.24 to 1.81), death (OR: 1.8, 95%CI: 1.34 to 2.65), pancreatic necrosis (OR: 1.22, 95%CI: 1.04 to 1.42), and organ failure (OR: 1.21, 95%CI: 1.04 to 1.41). The predictive value of CRP/ALB ratio for pancreatic necrosis was lower than that of MCTSI, for organ failure was lower than that of Ranson and BISAP, and for death was higher than that of MCTSI. Conclusion The CRP/ALB ratio may be a novel but promising, easily measurable, reproducible, non-invasive prognostic score that can be used to predict SAP, death, pancreatic necrosis, and organ failure in AP patients, which can be a supplement of Ranson, MCTSI, and BISAP scores.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Emergency, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wenwen Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - You Lu
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yan Zhao
- Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China,Correspondence: Yan Zhao Yugang Zhuang
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China,Correspondence: Yan Zhao Yugang Zhuang
| |
Collapse
|
6
|
Satyanarayana N, Chinni SV, Gobinath R, Sunitha P, Uma Sankar A, Muthuvenkatachalam BS. Antidiabetic activity of Solanum torvum fruit extract in streptozotocin-induced diabetic rats. Front Nutr 2022; 9:987552. [PMID: 36386935 PMCID: PMC9650639 DOI: 10.3389/fnut.2022.987552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 12/06/2022] Open
Abstract
Background Solanum torvum Swartz, a medicinal plant belonging to the family Solanaceae, is an important medicinal plant widely distributed throughout the world and used as medicine to treat diabetes, hypertension, tooth decay, and reproductive problems in traditional systems of medicine around the world including Malaysia. The objective of this study was to investigate hypoglycemic, antilipidemic, and hepatoprotective activities, histopathology of the pancreas, and specific glucose regulating gene expression of the ethanolic extract of S. torvum fruit in streptozotocin-induced diabetic Sprague–Dawley rats. Materials and methods Acute toxicity study was done according to OECD-423 guidelines. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in male Sprague–Dawley rats. Experimental diabetic rats were divided into six different groups; normal, diabetic control, and glibenclamide at 6 mg/kg body weight, and the other three groups of animals were treated with oral administration of ethanolic extract of S. torvum fruit at 120, 160, and 200 mg/kg for 28 days. The effect of ethanolic extract of S. torvum fruit on body weight, blood glucose, lipid profile, liver enzymes, histopathology of pancreas, and gene expression of glucose transporter 2 (slc2a2), and phosphoenolpyruvate carboxykinase (PCK1) was determined by RT-PCR. Results Acute toxicity studies showed LD50 of ethanolic extract of S. torvum fruit to be at the dose of 1600 mg/kg body weight. Blood glucose, total cholesterol, triglycerides, low-density lipoproteins, very low-density lipoproteins, serum alanine aminotransferase, and aspartate aminotransferase were significantly reduced, whereas high-density lipoproteins were significantly increased in S. torvum fruit (200 mg/kg)-treated rats. Histopathological study of the pancreas showed an increase in number, size, and regeneration of β-cell of islets of Langerhans. Gene expression studies revealed the lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control. Conclusion Ethanolic extract of S. torvum fruits showed hypoglycemic, hypolipidemic, and hepatoprotective activity in streptozocin-induced diabetic rats. Histopathological studies revealed regeneration of β cells of islets of Langerhans. Gene expression studies indicated lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control, indicating that the treated animals prefer the gluconeogenesis pathway.
Collapse
Affiliation(s)
- Namani Satyanarayana
- Department of Anatomy, Saint James School of Medicine, Saint Vincent, Saint Vincent and the Grenadines
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- *Correspondence: Suresh V. Chinni, ,
| | - Ramachawolran Gobinath
- Department of Foundation, RCSI and UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | - Paripelli Sunitha
- Department of Physiology, Saint James School of Medicine, Saint Vincent, Saint Vincent and the Grenadines
| | - Akula Uma Sankar
- Faculty of Medicine, Biochemistry Unit, AIMST University, Bedong, Kedah, Malaysia
| | | |
Collapse
|
7
|
Wistin Exerts an Anti-Inflammatory Effect via Nuclear Factor-κB and p38 Signaling Pathways in Lipopolysaccharide-Stimulated RAW264.7 Cells. Molecules 2022; 27:molecules27175719. [PMID: 36080491 PMCID: PMC9457767 DOI: 10.3390/molecules27175719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Inflammation is an immune response to cellular damage caused by various stimuli (internal or external) and is essential to human health. However, excessive inflammatory responses may be detrimental to the host. Considering that the existing drugs for the treatment of inflammatory diseases have various side effects, such as allergic reactions, stomach ulcers, and cardiovascular problems, there is a need for research on new anti-inflammatory agents with low toxicity and fewer side effects. As 4′,6-dimethoxyisoflavone-7-O-β-d-glucopyranoside (wistin) is a phytochemical that belongs to an isoflavonoid family, we investigated whether wistin could potentially serve as a novel anti-inflammatory agent. In this study, we found that wistin significantly reduced the production of nitric oxide and intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW 264.7 cells. Moreover, wistin reduced the mRNA levels of pro-inflammatory enzymes (inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2)) and cytokines (interleukin (IL)-1β and IL-6) and significantly reduced the protein expression of pro-inflammatory enzymes (iNOS and COX-2). Furthermore, wistin reduced the activation of the nuclear factor-κB and p38 signaling pathways. Together, these results suggest that wistin is a prospective candidate for the development of anti-inflammatory drugs.
Collapse
|
8
|
Ameliorative Effects of Gut Microbial Metabolite Urolithin A on Pancreatic Diseases. Nutrients 2022; 14:nu14122549. [PMID: 35745279 PMCID: PMC9229509 DOI: 10.3390/nu14122549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022] Open
Abstract
Urolithin A (Uro A) is a dietary metabolite of the intestinal microbiota following the ingestion of plant-based food ingredients ellagitannins and ellagic acid in mammals. Accumulating studies have reported its multiple potential health benefits in a broad range of diseases, including cardiovascular disease, cancer, cognitive impairment, and diabetes. In particular, Uro A is safe via direct oral administration and is non-genotoxic. The pancreas plays a central role in regulating energy consumption and metabolism by secreting digestive enzymes and hormones. Numerous pathophysiological factors, such as inflammation, deficits of mitophagy, and endoplasmic reticulum stress, can negatively affect the pancreas, leading to pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes mellitus. Recent studies showed that Uro A activates autophagy and inhibits endoplasmic reticulum stress in the pancreas, thus decreasing oxidative stress, inflammation, and apoptosis. In this review, we summarize the knowledge of Uro A metabolism and biological activity in the gut, as well as the pathological features and mechanisms of common pancreatic diseases. Importantly, we focus on the potential activities of Uro A and the underlying mechanisms in ameliorating various pancreatic diseases via inhibiting inflammatory signaling pathways, activating autophagy, maintaining the mitochondrial function, and improving the immune microenvironment. It might present a novel nutritional strategy for the intervention and prevention of pancreatic diseases.
Collapse
|
9
|
Yang J, Liu M, Wang S, Gan Y, Chen X, Tao Y, Gao J. Alteration of Peripheral Resistin and the Severity of Acute Pancreatitis: A Meta-Analysis. Front Med (Lausanne) 2022; 9:915152. [PMID: 35770007 PMCID: PMC9234264 DOI: 10.3389/fmed.2022.915152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Resistin is a small secretory adipokine which is implicated to obesity and associated diseases. Recently, plenty of research papers have been conducted to explore the association between peripheral resistin and the severity of acute pancreatitis (AP). However, the results were controversial. In this study, we aimed to confirm the effect of peripheral resistin and the development of acute pancreatitis. Methods A comprehensive online search was performed using the PubMed, Embase, Web of Science, CNKI, and Wanfang databases up through January 20, 2022. The retrieved records and their references were screened to identify additional studies. Data were extracted to calculate the pooled Hedges' g and its 95% CI, which were selected to assess peripheral resistin levels and the severity of acute pancreatitis. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken based on obtained information. Results A total of eleven studies with 892 acute pancreatitis patients were enrolled in the study. Peripheral resistin levels were significantly increased in severe acute pancreatitis compared with mild acute pancreatitis (Hedges' g = 2.092, 95% CI: 0.994–3.190, P < 0.001). Subgroup analyses based on sample types and ethnicity also showed similar results. A single study did not affect our results, which was verified by sensitivity analysis. Meta-regression analyses revealed that age, gender of the included subjects, sample size, and publication year did not moderate effects on the present results. Conclusion In our study, peripheral resistin levels were significantly elevated in patients with severe AP compared with patients with mild AP. Abnormal resistin levels may provide us some new insights in predicting the severity of AP.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Critical Care Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Mengyao Liu
- Department of Osteology, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shu Wang
- Department of Critical Care Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Yuanxiu Gan
- Department of Critical Care Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Xiangyu Chen
- Department of Emergency, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Xiangyu Chen
| | - Yang Tao
- Department of Critical Care Medicine, Chongqing Emergency Medical Center, Chongqing, China
- Yang Tao
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Junwei Gao
| |
Collapse
|
10
|
Zhirong Z, Li H, Yiqun H, Chunyang H, Lichen Z, Zhen T, Tao W, Ruiwu D. Enhancing or inhibiting apoptosis? The effects of ucMSC-Ex in the treatment of different degrees of traumatic pancreatitis. Apoptosis 2022; 27:521-530. [PMID: 35612769 DOI: 10.1007/s10495-022-01732-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
The animal models of traumatic pancreatitis (TP) were established to evaluate the specific mechanisms by which umbilical cord mesenchymal stem cell-derived exosomes (ucMSC-Ex) exert therapeutic effects. Sixty four rats were randomly divided into eight groups, including TP groups with three different degrees and relevant groups with ucMSC-Ex treated. The degrees of pancreatic tissue injury were evaluated by Histological Examination. Furthermore, enzyme-linked immunosorbent assay were applied to evaluate the activity of pancreatic enzymes and levels of inflammatory factors in serum. Finally, the apoptotic effects of each group were evaluated by TUNEL, western blot (WB), and real time fluorescence quantitative polymerase chain reaction (RT-qPCR). The pancreatic histopathological score and serum amylase and lipase levels gradually increased in various degrees of TP and the levels in the treatment group were all significantly decreased. The apoptosis index gradually increased in each TP group and significantly decreased in the treatment group in TUNEL results. WB and RT-qPCR showed the same trend, that bax and caspase-3 gradually increased and bcl-2 gradually decreased in TP groups. Compared with TP groups, the expression of bax and caspase-3 were lower while bcl-2 expression was higher in the treatment group. ucMSC-Ex suppressed the inflammatory response and inhibited pancreatic acinar cell apoptosis to promote repair of injured pancreatic tissue.
Collapse
Affiliation(s)
- Zhao Zhirong
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Li
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - He Yiqun
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - He Chunyang
- Hyperbaric Oxygen Department, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.,College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tan Zhen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Wang Tao
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China. .,College of Medicine, Southwest Jiaotong University, Chengdu, China. .,College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|