1
|
Wu Y, Wang Y, Liu H, Hu Q, Xie Y, Nan X, He H, Liu Y. Mechanism of apoptosis in oral squamous cell carcinoma promoted by cardamonin through PI3K/AKT signaling pathway. Sci Rep 2024; 14:20802. [PMID: 39242879 PMCID: PMC11379709 DOI: 10.1038/s41598-024-71817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Currently, surgical resection remains the primary approach for treating oral squamous cell carcinoma (OSCC), with limited options for effective drug therapy. Cardamonin, a principal compound derived from Myristica fragrans of the Zingiberaceae family, has garnered attention for its potential to suppress the onset and progression of various malignancies encompassing breast cancer, hepatocellular carcinoma, and ovarian cancers. Nevertheless, the involvement of cardamonin in the treatment of OSCC and its underlying mechanisms are yet to be elucidated. This research explored the possible target of cardamonin in treating OSCC via network pharmacological analysis. Subsequently, this research investigated the impact of cardamonin on OSCC cells via in vitro experiments, revealing its capacity to impede the migration, proliferation, and invasion of OSCC cells. Additionally, western blotting analysis demonstrated that cardamonin facilitates apoptosis by regulating the PI3K/AKT pathway. The findings suggest that MMP9 and the PI3K/AKT signaling pathway may serve as the target and pathway of cardamonin in treating OSCC. To summarize, the research findings suggest that cardamonin may facilitate apoptosis in OSCC cells by inhibition of PI3K/AKT pathway activation. These outcomes offer a theoretical basis for the utilization of cardamonin as a natural drug for treating OSCC.
Collapse
Affiliation(s)
- Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Yapei Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Han Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Qiannan Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuqi Xie
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Huan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Ouyang C, Xu G, Xie J, Xie Y, Zhou Y. Silencing of KIAA1429, a N6-methyladenine methyltransferase, inhibits the progression of colon adenocarcinoma via blocking the hypoxia-inducible factor 1 signalling pathway. J Biochem Mol Toxicol 2024; 38:e23829. [PMID: 39215765 DOI: 10.1002/jbt.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
KIAA1429 is an important 'writer' of the N6-methyladenine (m6A) modification, which is involved in tumour progression. This study was conducted to explore the mechanism of action of KIAA1429 in colon adenocarcinoma (COAD). KIAA1429-silenced COAD cell and xenograft tumour models were constructed, and the function of KIAA1429 was explored through a series of in vivo and in vitro assays. The downstream mechanisms of KIAA1429 were explored using transcriptome sequencing. Dimethyloxalylglycine (DMOG), an activator of HIF-1α, was used for feedback verification. The expression of KIAA1429 in COAD tumour tissues and cells was elevated, and KIAA1429 exhibited differential expression at different stages of the tumour. Silencing of KIAA1429 inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells. The expression levels of NLRP3, GSDMD and Caspase-1 were decreased in KIAA1429-silenced HT29 cells, indicating the pyroptotic activity was inhibited. Additionally, KIAA1429 silencing inhibited the growth of tumour xenograft. Transcriptome sequencing and reverse transcription quantitative polymerase chain reaction revealed that after KIAA1429 silencing, the expression of AKR1C1, AKR1C2, AKR1C3 and RDH8 was elevated, and the expression of VIRMA, GINS1, VBP1 and ARF3 was decreased. In HT29 cells, KIAA1429 silencing blocked the HIF-1 signalling pathway, accompanied by the decrease in AKT1 and HIF-1α protein levels. The activation of HIF-1 signalling pathway, mediated by DMOG, reversed the antitumour role of KIAA1429 silencing. KIAA1429 silencing inhibits COAD development by blocking the HIF-1 signalling pathway.
Collapse
Affiliation(s)
- Canhui Ouyang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Zhou
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Liu X, Guo Y, Wang X, Wang X, Gong T, Wang X, Xia Y, Zheng W, Guo Y, Han M. Preparation of cardamonin and IR780 Co-loaded on Lycium barbarum polysaccharide nanoparticles and anti-tumor efficacy evaluation. J Drug Deliv Sci Technol 2024; 99:106004. [DOI: 10.1016/j.jddst.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zhang P, Song D, Fang Z, Sun D, Wang L, Shi L, Gao L, Jiang X. Cardamomin Inhibits the Proliferation and Tumorigenesis of Bladder Cancer by ESR1 in PI3K/AKT Pathway. Biochem Genet 2024:10.1007/s10528-024-10854-x. [PMID: 38867088 DOI: 10.1007/s10528-024-10854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 06/14/2024]
Abstract
Cardamomin has been widely studied in cancer, but its role in cancer bladder cancer has not been mentioned. In this study, we validated the anti-cancer effect of cardamom and whether its potential mechanism is related to the PI3K/AKT pathway. After treating with different doses of cardamomin, the cytotoxicity was studied by CCK8. Secondly, we analyzed the effect of cardamomin on the proliferation, apoptosis and cell movement. Next, we analyzed the regulation of ESR1 by western blot and its impact on the PI3K/AKT pathway. We also transfected ESR1 overexpression and silencing vectors, and verified the transfection efficiency through RT-qPCR. Further, the specific mechanism of the drug's inhibitory effect on bladder cancer was also determined. We constructed the subcutaneous tumor model in vivo. After cardamomin administration, we mainly analyzed the positive expression of KI67 in tumor tissues by immunohistochemistry, and the apoptotic cells in tumor tissues by TUNEL, and related proteins in PI3K/AKT pathway by western blot. In this paper, cardamomin inhibited cell proliferation and invasion ability, blocked the transition of G0/G1 phase to S phase, and increased apoptotic rate of 5637 and HT1376 cells, as well as raised ESR1 expression. Cardamomin exerted anti-tumor effect through PI3K/AKT pathway. In vivo animal experiments indicated the inhibitory effect of cardamomin on subcutaneous implanted tumor. Cardamomin inhibited the positive expression of KI67 and promoted the TUNEL-positive cells in tumor tissues. Consistent with in vitro assay, cardamomin increased the expression of ESR1 and downregulated the PI3K/AKT pathway. Cardamomin has a significant inhibitory effect on bladder cancer, and upregulate the expression of ESR1 in bladder cancer through PI3K/AKT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Dapeng Song
- Department of Surgery, Yantai Haiyang Traditional Chinese Medicine Hospital, Yantai, Shandong, China
| | - Zhidong Fang
- Department of Urology, People's Hospital of Rongcheng, Weihai, Shandong, China
| | - Dekang Sun
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Lin Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Lei Shi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Liang Gao
- Department of Surgery, Rushan Hospital of Traditional Chinese Medicine, Xinhua Street 47, Weihai, 264599, Shandong, China.
| | - Xudong Jiang
- Department of Surgery, Rushan Hospital of Traditional Chinese Medicine, Xinhua Street 47, Weihai, 264599, Shandong, China.
| |
Collapse
|
5
|
Wu Y, Dai S, Zhang Y, Li Z, Zhu B, Liu Q, Wo L, Yu Z, Yuan X, Dou X. Atractylenolide II combined with Interferon-γ synergistically ameliorates colorectal cancer progression in vivo and in vitro by blocking the NF-kB p65/PD-L1 pathway. J Cancer 2024; 15:4328-4344. [PMID: 38947390 PMCID: PMC11212082 DOI: 10.7150/jca.96647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose: Atractylodes macrocephala Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells. Atractylenolides-II (AT-II) belongs to the lactone compound that is derived from Atractylodes macrocephala Koidz with anti-cancer activity. However, whether AT-II combined with IFN-γ modulates CRC progression and the underlying mechanisms remain unclear. The present study aimed to elucidate the efficacy and pharmaceutical mechanism of action of AT-II combined with IFN-γ synergistically against CRC by regulating the NF-kB p65/PD-L1 signaling pathway. Methods: HT29 and HCT15 cells were treated with AT-II and IFN-γ alone or in combination and cell viability, migration, and invasion were then analyzed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Furthermore, the underlying mechanism was investigated through western blot assay. The role of AT-II combined with IFN-γ on tumor growth and lung metastases was estimated in vivo. Finally, the population of lymphocytes in tumor tissues of lung metastatic C57BL/6 mice and the plasma cytokine levels were confirmed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results: AT-II or the combination IFN-γ significantly inhibited the growth and migration abilities of CRC cells in vitro and in vivo. The biological mechanisms behind the beneficial effects of AT-II combined with IFN-γ were also measured and inhibition of p38 MAPK, FAK, Wnt/β-catenin, Smad, and NF-kB p65/PD-L1 pathways was observed. Moreover, AT-II combined with IFN-γ significantly inhibited HCT15 xenograft tumor growth and lung metastases in C57BL/6 mice, which was accompanied by lymphocyte infiltration into the tumor tissues and inflammatory response inactivation. Conclusions: The results showed that the AT-II in combination with IFN-γ could be used as a potential strategy for tumor immunotherapy in CRC. More importantly, the mechanism by which AT-II suppressed CRC progressions was by inhibiting the NF-kB p65/PD-L1 signal pathway.
Collapse
Affiliation(s)
- Yangsheng Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - YuJia Zhang
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zheming Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo Zhu
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qingsheng Liu
- Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Like Wo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
7
|
Nair SG, Benny S, Jose WM, Aneesh T P. Beta-blocker adjunct therapy as a prospective anti-metastatic with cardio-oncologic regulation. Clin Exp Metastasis 2024; 41:9-24. [PMID: 38177715 DOI: 10.1007/s10585-023-10258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The prevailing treatment stratagem in cancer therapy still challenges the dilemma of a probable metastatic spread following an initial diagnosis. Including an anti-metastatic agent demands a significant focus to overrule the incidence of treatment failures. Adrenergic stimulation underlying the metastatic spread paved the way for beta blockers as a breakthrough in repurposing as an anti-metastatic agent. However, the current treatment approach fails to fully harness the versatile potential of the drug in inhibiting probable metastasis. The beta blockers were seen to show a myriad of grip over the pro-metastatic and prognostic parameters of the patient. Novel interventions in immune therapy, onco-hypertension, surgery-induced stress, induction of apoptosis and angiogenesis inhibition have been used as evidence to interpret our objective of discussing the potential adjuvant role of the drug in the existing anti-cancer regimens. Adding weight to the relative incidence of onco-hypertension as an unavoidable side effect from chemotherapy, the slot for an anti-hypertensive agent is necessitated, and we try to suggest beta-blockers to fill this position. However, pointing out the paucity in the clinical study, we aim to review the current status of beta blockers under this interest to state how the drug should be included as a drug of choice in every patient undergoing cancer treatment.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi, Kerala, 682041, India.
| | - Aneesh T P
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
8
|
Zhang L, Chi W, Wang X, Li J, Li F, Ma Y, Zhang Q. The role of miR-6884-5p in epithelial-mesenchymal transition in non-small cell lung cancer. Aging (Albany NY) 2024; 16:1968-1979. [PMID: 38271114 PMCID: PMC10866446 DOI: 10.18632/aging.205474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
Significant progress has been made in the management of non-small cell lung cancer (NSCLC), though a big barrier remains, which is epithelial-mesenchymal transition (EMT). Our study aimed to evaluate the function of miR-6884-5p and S100A16 in EMT-aggravated NSCLC. The tumor tissues and adjacent tissues from 92 NSCLC patients were collected to analyze the expression of miR-6884-5p and S100A16. Then lung cancer cell line A549 was co-transfected with miR-6884-5p mimics and S100A16 to further evaluate their function. Compared to adjacent tissues, low expression of miR-6884-5p was observed in the NSCLC tissues and associated with severe NSCLC progression. MiR-6884-5p expression was negatively correlated with EMT in NSCLC. Luciferase assay data revealed that miR-6884-5p could directly bind to the 3'UTR of S100A16 and inhibited the expression of S100A16 in A549 cells. Moreover, miR-6884-5p mimics significantly ameliorated EMT progression, and overexpression of S100A16 could reverse the inhibitory effect of miR-6884-5p in A549 cells. MiR-6884-5p inhibited EMT through directly targeting S100A16 in NSCLC. Our findings suggest that miR-6884-5p could be a diagnostic marker of NSCLC, as well as a potential candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Lianyong Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Wei Chi
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Jingjing Li
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Fei Li
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Yuxia Ma
- Department of Geriatrics, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Qianyun Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| |
Collapse
|
9
|
Hba S, Ghaddar S, Wahnou H, Pinon A, El Kebbaj R, Pouget C, Sol V, Liagre B, Oudghiri M, Limami Y. Natural Chalcones and Derivatives in Colon Cancer: Pre-Clinical Challenges and the Promise of Chalcone-Based Nanoparticles. Pharmaceutics 2023; 15:2718. [PMID: 38140059 PMCID: PMC10748144 DOI: 10.3390/pharmaceutics15122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer.
Collapse
Affiliation(s)
- Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Suzan Ghaddar
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Christelle Pouget
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| |
Collapse
|
10
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
11
|
Wu Y, Luo J, Xu B. Network pharmacology and bioinformatics to identify the molecular mechanisms of Gleditsiae Spina against colorectal cancer. Curr Res Toxicol 2023; 5:100139. [PMID: 38059131 PMCID: PMC10696432 DOI: 10.1016/j.crtox.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Objective In this study, network pharmacology, bioinformatics and molecular docking were used to explore the active phytochemicals, hub genes, and potential molecular mechanisms of Gleditsiae Spina in treating of colorectal cancer.. Methods The targets of Gleditsiae Spina, and targets related to CRC were derived from databases. We identified the hub genes for Gleditsiae Spina anti-colorectal cancer following the protein-protein-interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the hub genes from a macro perspective. Finally, we verified the hub genes by molecular docking, GEPIA, HPA, and starBase database. Results We identified nine active phytochemicals and 36 intersection targets. The GO enrichment analysis results showed that Gleditsiae Spina may be involved in gene targets affecting multiple biological processes, including response to radiation, response to ionizing radiation, cyclin-dependent protein kinase holoenzyme complex, serine/threonine protein kinase complex, cyclin-dependent protein serine/threonine kinase regulator activity and protein kinase regulator activity. KEGG enrichment analysis results indicated that the P53 signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, PI3K-Akt signaling pathway, and JAK-STAT signaling pathway were mainly related to the effect of Gleditsiae Spina on colorectal cancer. Molecular docking analysis suggested that the active phytochemicals of Gleditsiae Spina could combine well with hub genes (PTGS1, PIK3CG, CCND1, CXCL8 and ADRB2). Conclusion This study provides clues for further study of anti-CRC phytochemicals as well as their mechanisms of provides a basis for their development model.
Collapse
Affiliation(s)
- Yingzi Wu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
12
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
13
|
Study on the Action Mechanism of the Yifei Jianpi Tongfu Formula in Treatment of Colorectal Cancer Lung Metastasis Based on Network Analysis, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6229444. [PMID: 35942366 PMCID: PMC9356795 DOI: 10.1155/2022/6229444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Objective The lung is the second most common site of colorectal cancer (CRC) metastasis. This study aims to investigate the therapeutic effects and potential action mechanisms of Yifei Jianpi Tongfu formula (YJTF) in CRC lung metastasis in a comprehensive and systematic way by network analysis, molecular docking, and experimental verification. Methods The main ingredients in YJTF were screened from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID), and the disease-related targets from the Online Mendelian Inheritance in Man (OMIM) and GeneCards and the compound-related targets from SwissTargetPrediction were collected. Then, Metascape was used for pathway annotation and enrichment analysis, and meanwhile, a protein-protein interaction (PPI) network was constructed. Molecular docking was carried out to investigate interactions between the active compounds and the potential targets. The in vivo effect of YJTF on CRC lung metastasis was observed in a tail vein injection mouse model. Results A total of 243 active compounds and 81 disease-related targets of YJTF were selected for analysis. The results of multiple network analysis showed that the core targets of YJTF were enriched onto various cancer-related pathways, especially focal adhesion and adherens junction. The results of molecular docking demonstrated that all core compounds (quercetin, kaempferol, luteolin, apigenin, and isorhamnetin) were capable of binding with AKT1, EGFR, SRC, ESR1, and PTGS2. Experimental validation in vivo demonstrated that YJTF combined with oxaliplatin could significantly reduce the number of lung metastases and improve the quality of life in mice. Further research suggested that YJTF inhibited CRC lung metastasis probably by modulating epithelial-to-mesenchymal transition (EMT). Conclusions According to the analysis, YJTF can be considered as an effective adjuvant therapy for CRC lung metastasis.
Collapse
|