1
|
Xia J, Jia D, Wu J. Protective effects of alpinetin against interleukin-1β-exposed nucleus pulposus cells: Involvement of the TLR4/MyD88 pathway in a cellular model of intervertebral disc degeneration. Toxicol Appl Pharmacol 2024; 492:117110. [PMID: 39322069 DOI: 10.1016/j.taap.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Intervertebral disc degeneration (IDD) causes a variety of symptoms such as low back pain, disc herniation, and spinal stenosis, which can lead to high social and economic costs. Alpinetin has an anti-inflammatory potential, but its effect on IDD is unclear. Herein, we investigated the effect of alpinetin on IDD. To mimic an in vitro model of IDD, nucleus pulposus cells (NPCs) were exposed to interleukin 1β (IL-1β). The viability of NPCs was assessed by CCK-8 assay. The expression of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MyD88), aggrecan, collagen-2, and matrix metalloproteinase-3 (MMP-3) was examined by qRT-PCR and western blotting. The protein levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated protein X (Bax), and cleaved caspase-3 were scrutinized by western blotting. The flow cytometry assay was performed to assess apoptosis of NPCs. The contents of inflammatory factors were examined by ELISA kits. Results showed that alpinetin repressed IL-1β-tempted activation of the TLR4/MyD88 pathway and apoptosis in NPCs. Alpinetin alleviated IL-1β-tempted inflammatory responses and oxidative stress in NPCs. Moreover, alpinetin lessened IL-1β-tempted extracellular matrix (ECM) degeneration in NPCs by enhancing the expression of aggrecan and collagen-2 and reducing the expression of MMP-3. The effects of alpinetin on IL-1β-exposed NPCs were neutralized by TLR4 upregulation. In conclusion, alpinetin repressed IL-1β-tempted apoptosis, inflammatory responses, oxidative stress, and ECM degradation in NPCs through the inactivation of the TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Junfeng Xia
- Department of Orthopedics, Nanyang First People's Hospital, Nanyang, China
| | - Di Jia
- Medical Department, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Cui P, Sheng Y, Wu C, He D. Puerarin modulates proliferation, inflammation and ECM metabolism in human nucleus pulposus mesenchymal stem cells via the lncRNA LINC01535. Heliyon 2024; 10:e33083. [PMID: 39021929 PMCID: PMC11253265 DOI: 10.1016/j.heliyon.2024.e33083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by progressive destruction of the intervertebral disc, leading to chronic low back pain and disability. Emerging evidence suggests that dysregulation of ferroptosis, a recently discovered form of regulated cell death, participates in IVDD pathogenesis. Puerarin, a natural flavonoid compound from Pueraria lobata, has shown promise in modulating ferroptosis in various diseases. Methods Human nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated and identified by flow cytometry. We investigated the effects of puerarin on human NPMSCs and examined the underlying molecular mechanisms. Results Puerarin significantly promoted human NPMSC proliferation, as evidenced by the increased cell viability and colony formation ability. Furthermore, puerarin suppressed the expression of cyclooxygenase-2 and the proinflammatory cytokine interleukin-6 in NPMSCs, demonstrating the anti-inflammatory properties of the compound. Notably, puerarin attenuated ECM breakdown by downregulating the ECM-degrading enzymes MMP3, MMP13 and ADAMTS5, and it increased ECM component synthesis, including collagen type II and aggrecan, by NPMSCs. Moreover, puerarin inhibited ferroptosis in NPMSCs by modulating the expression of key ferroptosis-related genes, including ACSL4, PTGS2 and GPX4. Depletion of LINC01535 abolished the effects of puerarin on proliferation, inflammation and ECM metabolism, suggesting a key role of this lncRNA in mediating the effects of puerarin. Conclusion Our findings show that puerarin promotes the proliferation of human NPMSCs and ECM synthesis by these cells. Furthermore, puerarin inhibits inflammation and ECM degradation by suppressing ferroptosis via LINC01535. These results provide insights into the molecular mechanisms underlying the therapeutic effects of puerarin in IVDD. Targeting ferroptosis and its regulatory factors, such as LINC01535, may have therapeutic potential for the treatment of IDD and other degenerative disorders of the intervertebral disc. Further studies are needed to uncover the translational potential of puerarin and its downstream targets in preclinical and clinical applications.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| |
Collapse
|
3
|
Li M, Yu X, Chen X, Jiang Y, Zeng Y, Ren R, Nie M, Zhang Z, Bao Y, Kang H. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence. Int Immunopharmacol 2024; 133:112101. [PMID: 38640717 DOI: 10.1016/j.intimp.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongqiao Jiang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunqian Zeng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ranyue Ren
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mingbo Nie
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Wang N, Rong W, Xie Y, Chen S, Xi Z, Deng R. Visualizing the bibliometrics of the inflammatory mechanisms in intervertebral disc degeneration. Exp Gerontol 2024; 188:112380. [PMID: 38382680 DOI: 10.1016/j.exger.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) constitutes a crucial pathological foundation for spinal degenerative diseases (SDD) and stands as a primary contributor to both low back pain (LBP) and disability. The progression of IVDD is linked to structural and functional alterations in tissues, where an imbalance in the inflammatory microenvironment can induce extracellular matrix (ECM) degradation, senescence, and apoptosis. This imbalance is a key pathomechanism in the disease's development, gaining considerable attention in recent years. This study aims to conduct a bibliometric analysis of publications pertaining to the inflammatory mechanisms of IVDD to quantitatively assess current research hotspots and directions. METHODS In this study, we queried the Web of Science Core Collection (WOSCC) database covering the period from January 1, 2001, to November 7, 2023. Content in this area was analyzed and visualized using software such as Citespace, Vosviewer, and the bibliometrix package. RESULTS Findings indicate a consistent annual increase in the number of publications, highlighting the widespread attention garnered by research on the inflammatory mechanisms of IVDD. In terms of journal research, Spine emerged with the highest number of publications, along with significantly elevated total citations and average citations compared to other journals. Regarding country analysis, China led in the number of publications, while the USA claimed the highest number of citations and total link strength. Institutional analysis revealed Sun Yat-sen University as having the highest number of publications and total link strength, with Thomas Jefferson University securing the highest total citations. Author analysis identified Ohtori, S. with the highest number of publications, Risbud, M.V. with the highest number of citations, and Inoue, G. with the highest total link strength, all of whom have made significant contributions to the field's development. Citation and co-citation analyses indicated that highly cited documents primarily focused on classical studies exploring inflammatory mechanisms in IVDD pathogenesis. Keyword analysis showcased the ongoing research hotspot as the further investigation of mechanisms and treatment studies. Recent years have seen a shift towards exploring pyroptosis, necrotic apoptosis, autophagy, ferroptosis, oxidative stress, and bacterial infection, among other mechanisms. In terms of treatment, alongside traditional monomer, drug, and compound therapies for IVDD, research is increasingly concentrating on stem cell therapy, exosomes, hydrogels, and scaffolds. CONCLUSION This bibliometric analysis of research on inflammatory mechanisms in IVDD provides insights into the current status, hotspots, and potential future trends. These findings can serve as a valuable reference and guide for researchers in the field.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China.
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China.
| |
Collapse
|