Improving Visible Light-Absorptivity and Photoelectric Conversion Efficiency of a TiO₂ Nanotube Anode Film by Sensitization with Bi₂O₃ Nanoparticles.
NANOMATERIALS 2017;
7:nano7050104. [PMID:
28486406 PMCID:
PMC5449985 DOI:
10.3390/nano7050104]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
This study presents a novel visible light-active TiO₂ nanotube anode film by sensitization with Bi₂O₃ nanoparticles. The uniform incorporation of Bi₂O₃ contributes to largely enhancing the solar light absorption and photoelectric conversion efficiency of TiO₂ nanotubes. Due to the energy level difference between Bi₂O₃ and TiO₂, the built-in electric field is suggested to be formed in the Bi₂O₃ sensitized TiO₂ hybrid, which effectively separates the photo-generated electron-hole pairs and hence improves the photocatalytic activity. It is also found that the photoelectric conversion efficiency of Bi₂O₃ sensitized TiO₂ nanotubes is not in direct proportion with the content of the sensitizer, Bi₂O₃, which should be carefully controlled to realize excellent photoelectrical properties. With a narrower energy band gap relative to TiO₂, the sensitizer Bi₂O₃ can efficiently harvest the solar energy to generate electrons and holes, while TiO₂ collects and transports the charge carriers. The new-type visible light-sensitive photocatalyst presented in this paper will shed light on sensitizing many other wide-band-gap semiconductors for improving solar photocatalysis, and on understanding the visible light-driven photocatalysis through narrow-band-gap semiconductor coupling.
Collapse