1
|
Adesanmi BO, Mantripragada S, Ayivi RD, Tukur P, Obare SO, Wei J. Adsorptive removal of organophosphate pesticides from aqueous solution using electrospun carbon nanofibers. Front Chem 2024; 12:1454367. [PMID: 39253543 PMCID: PMC11381308 DOI: 10.3389/fchem.2024.1454367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Organophosphate pesticides (OPPs) are widely prevalent in the environment primarily due to their low cost and extensive use in agricultural lands. However, it is estimated that only about 5% of these applied pesticides reach their intended target organisms. The remaining 95% residue linger in the environment as contaminants, posing significant ecological and health risks. This underscores the need for materials capable of effectively removing, recovering, and recycling these contaminants through adsorption processes. In this research, adsorbent materials composed of electro-spun carbon nanofibers (ECNFs) derived from polyacrylonitrile was developed. The materials were characterized through several techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) analysis, and contact angle measurements. SEM analysis revealed details of the structural properties and inter-fiber spacing variations of the carbon nanofibers. The results revealed that ECNFs possess remarkable uniformity, active surface areas, and high efficiency for adsorption processes. The adsorption studies were conducted using batch experiments with ethion pesticide in aqueous solution. High-Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) was utilized to quantify the concentrations of the OPP. Various parameters, including adsorbent dosage, pH, contact time, and initial ethion concentration, were investigated to understand their impact on the adsorption process. The adsorption isotherm was best described by the Freundlich model, while the kinetics of adsorption followed a non-integer-order kinetics model. The adsorption capacity of the ECNFs for OPP removal highlights a significant advancement in materials designed for environmental remediation applications. This study demonstrates the potential of ECNFs to serve as effective adsorbents, contributing to the mitigation of pesticide contamination in agricultural environments.
Collapse
Affiliation(s)
- Bukola O Adesanmi
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Shobha Mantripragada
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Raphael D Ayivi
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Panesun Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, United States
| |
Collapse
|
2
|
Manjit M, Kumar M, Kumar K, Dhondale MR, Jha A, Bharti K, Rain Z, Prakash P, Mishra B. Fabrication of dual drug-loaded polycaprolactone-gelatin composite nanofibers for full thickness diabetic wound healing. Ther Deliv 2023. [PMID: 38124684 DOI: 10.4155/tde-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Zinnu Rain
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pradyot Prakash
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
4
|
García-Valderrama EJ, Mamidi N, Antunes-Ricardo M, Gutiérrez-Uribe JA, Del Angel-Sanchez K, Elías-Zúñiga A. Engineering and Evaluation of Forcespun Gelatin Nanofibers as an Isorhamnetin Glycosides Delivery System. Pharmaceutics 2022; 14:pharmaceutics14061116. [PMID: 35745689 PMCID: PMC9229772 DOI: 10.3390/pharmaceutics14061116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Opuntia ficus-indica (L.) Mill (OFI) is considered a natural source of bioactive phytochemicals, mainly isorhamnetin glycosides (IRGs). These compounds have demonstrated antioxidant, anti-inflammatory, and anticancer activities, among others. The development of a suitable delivery system for these compounds is needed to improve their chemical and biological stability. This study aimed to evaluate the feasibility of fabrication and characterization of IRG-loaded gelatin (GL) forcespun fibers and crosslinking with glutaraldehyde (GTA). Two different percentages (25% and 30% w/v) of GL were evaluated with 12% (w/v) OFI flour to obtain nanofibers GL/OFI1 and GL/OFI2, respectively. The morphology and physicochemical properties of the fibers were investigated. The results indicated that the diameters of the fibers were on the nanoscale. The amount of IRGs was determined using high-performance liquid chromatography (HPLC). The IRGs release and the cytocompatibility of the nanofibers were also evaluated. GL concentration significantly affected the IRG release. Among both nanofibers, the GL/OFI2 nanofiber achieved a cumulative IRGs release of 63% after 72 h. Both fibers were shown to be biocompatible with human skin/fibroblast cells. Specifically, GL/OFI1 nanofibers exhibited favorable features for their application as an extract-coupled release system. The IRGs-embedded GL nanofiber mats may become a good alternative for the delivery of phytochemicals for the health sector and biomedical applications.
Collapse
Affiliation(s)
- Elsy J. García-Valderrama
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico; (E.J.G.-V.); (M.A.-R.)
| | - Narsimha Mamidi
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnoloogy, Campus Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico; (K.D.A.-S.); (A.E.-Z.)
- Correspondence: (N.M.); (J.A.G.-U.); Tel.: +52-222-303-2000 (ext. 2272) (J.A.G.-U.)
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico; (E.J.G.-V.); (M.A.-R.)
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico; (E.J.G.-V.); (M.A.-R.)
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico
- Tecnologico de Monterrey, Campus Puebla, Av. Atlixcáyotl 5718, Puebla C.P. 72453, Mexico
- Correspondence: (N.M.); (J.A.G.-U.); Tel.: +52-222-303-2000 (ext. 2272) (J.A.G.-U.)
| | - Karina Del Angel-Sanchez
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnoloogy, Campus Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico; (K.D.A.-S.); (A.E.-Z.)
| | - Alex Elías-Zúñiga
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnoloogy, Campus Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur., Monterrey C.P. 64849, Mexico; (K.D.A.-S.); (A.E.-Z.)
| |
Collapse
|
5
|
Ehrmann A. Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine-A Review. Polymers (Basel) 2021; 13:1973. [PMID: 34203958 PMCID: PMC8232702 DOI: 10.3390/polym13121973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 02/04/2023] Open
Abstract
Electrospinning can be used to prepare nanofiber mats from diverse polymers, polymer blends, or polymers doped with other materials. Amongst this broad range of usable materials, biopolymers play an important role in biotechnological, biomedical, and other applications. However, several of them are water-soluble, necessitating a crosslinking step after electrospinning. While crosslinking with glutaraldehyde or other toxic chemicals is regularly reported in the literature, here, we concentrate on methods applying non-toxic or low-toxic chemicals, and enzymatic as well as physical methods. Making gelatin nanofibers non-water soluble by electrospinning them from a blend with non-water soluble polymers is another method described here. These possibilities are described together with the resulting physical properties, such as swelling behavior, mechanical strength, nanofiber morphology, or cell growth and proliferation on the crosslinked nanofiber mats. For most of these non-toxic crosslinking methods, the degree of crosslinking was found to be lower than for crosslinking with glutaraldehyde and other common toxic chemicals.
Collapse
Affiliation(s)
- Andrea Ehrmann
- Working Group Textile Technologies, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
6
|
Pham‐Nguyen O, Son YJ, Kwon T, Kim J, Jung YC, Park JB, Kang B, Yoo HS. Preparation of Stretchable Nanofibrous Sheets with Sacrificial Coaxial Electrospinning for Treatment of Traumatic Muscle Injury. Adv Healthc Mater 2021; 10:e2002228. [PMID: 33506655 DOI: 10.1002/adhm.202002228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/09/2022]
Abstract
Traumatic muscle injury with massive loss of muscle volume requires intramuscular implantation of proper scaffolds for fast and successful recovery. Although many artificial scaffolds effectively accelerate formation and maturation of myotubes, limited studies are showing the therapeutic effect of artificial scaffolds in animal models with massive muscle injury. In this study, improved myotube differentiation is approved on stepwise stretched gelatin nanofibers and applied to damaged muscle recovery in an animal model. The gelatin nanofibers are fabricated by a two-step process composed of co-axial electrospinning of poly(ɛ-caprolactone) and gelatin and subsequent removal of the outer shells. When stepwise stretching is applied to the myoblasts on gelatin nanofibers for five days, enhanced myotube formation and polarized elongation are observed. Animal models with volumetric loss at quadriceps femoris muscles (>50%) are transplanted with the myotubes cultivated on thin and flexible gelatin nanofiber. Treated animals more efficiently recover exercising functions of the leg when myotubes and the gelatin nanofiber are co-implanted at the injury sites. This result suggests that mechanically stimulated myotubes on gelatin nanofiber is therapeutically feasible for the robust recovery of volumetric muscle loss.
Collapse
Affiliation(s)
- Oanh‐Vu Pham‐Nguyen
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Young Ju Son
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Tae‐wan Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science Kangwon National University Chuncheon 24341 Republic of Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science Kangwon National University Chuncheon 24341 Republic of Korea
| | - Yun Chan Jung
- Chaon 331 Pangyo‐ro Bundang‐gu Seongnam Gyeonggi‐do 13488 Republic of Korea
| | - Jong Bae Park
- Jeonju Center Korea Basic Science Institute Jeonju 54907 Republic of Korea
| | - Byung‐Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Research Institute for Veterinary Science BK21 PLUS Program for Creative Veterinary Science Research Seoul National University Seoul 08826 Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
7
|
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E21. [PMID: 33374248 PMCID: PMC7823539 DOI: 10.3390/nano11010021] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
Collapse
Affiliation(s)
- Mina Keshvardoostchokami
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| |
Collapse
|
8
|
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
9
|
Osanloo M, Arish J, Sereshti H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03042-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|