1
|
Luo J, Sun Z. MicroRNAs in POI, DOR and POR. Arch Gynecol Obstet 2023; 308:1419-1430. [PMID: 36840768 DOI: 10.1007/s00404-023-06922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a clinical syndrome defined by loss of ovarian activity before the age of 40 years. However, the etiology of approximately 90% patients remains unknown. Diminished ovarian reserve (DOR) and poor ovarian response (POR) are related to POI in clinic. The main purpose of this review was to evaluate the roles of microRNAs (miRNAs) in the pathogenesis and therapeutic potential for POI, DOR and POR. METHODS A literature search was conducted using six databases (PubMed, EMBASE, Web of Science, Cochrane Library, CNKI and Wangfang Data) to obtain relevant studies. RESULTS This review enlightens expression profiles and functional studies of miRNAs in ovarian insufficiency in animal models and humans. Functional studies emphasized the role of miRNAs in steroidogenesis, granulosa cell proliferation/apoptosis, autophagy and follicular development by regulating target genes in specific pathways, such as the PI3K/AKT/mTOR, TGFβ, MAPK and Hippo pathways. Differentially expressed circulating miRNAs provided novel biomarkers for diagnosis and prediction, such as miR-22-3p and miR-21. Moreover, exosomes derived from stem cells restored ovarian function through miRNAs in chemotherapy-induced POI models. CONCLUSION Differential miRNA expression profiles in patients and animal models uncovered the underlying mechanisms and biomarkers of ovarian insufficiency. Exosomal miRNAs can restore ovarian function against chemotherapy-induced POI, which needs further investigation to develop novel preventive and therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Jiali Luo
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Medical School, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A, Solati A, Mousavi P, Shabaninejad Z, Vakili S, Behrouj H, Ghasemi H, Movahedpour A. microRNAs in female infertility: An overview. Cell Biochem Funct 2021; 39:955-969. [PMID: 34708430 DOI: 10.1002/cbf.3671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Infertility impacts a considerable number of women worldwide, and it affects different aspects of family life and society. Although female infertility is known as a multifactorial disorder, there are strong genetic and epigenetic bases. Studies revealed that miRNAs play critical roles in initiation and development of female infertility related disorders. Early diagnosis and control of these diseases is an essential key for improving disease prognosis and reducing the possibility of infertility and other side effects. Investigating the possible use of miRNAs as biomarkers and therapeutic options is valuable, and it merits attention. Thus, in this article, we reviewed research associated with female diseases and highlighted microRNAs that are related to the polycystic ovary syndrome (up to 30 miRNAs), premature ovarian failure (10 miRNAs), endometriosis (up to 15 miRNAs), uterine fibroids (up to 15 miRNAs), endometrial polyp (3 miRNAs), and pelvic inflammatory (6 miRNAs), which are involved in one or more ovarian or uterine disease-causing processes.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Roozitalab
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Behrouj
- Department of Clinical Biochemistry, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Abu-Halima M, Becker LS, Ayesh BM, Baus SL, Hamza A, Fischer U, Hammadeh M, Keller A, Meese E. Characterization of micro-RNA in women with different ovarian reserve. Sci Rep 2021; 11:13351. [PMID: 34172798 PMCID: PMC8233349 DOI: 10.1038/s41598-021-92901-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Women undergoing infertility treatment are routinely subjected to one or more tests of ovarian reserve. Therefore, an adequate assessment of the ovarian reserve is necessary for the treatment. In this study, we aimed to characterize the potential role of microRNAs (miRNAs) as biomarkers for women with different ovarian reserves. A total of 159 women were recruited in the study and classified according to their anti-Müllerian hormone (AMH) level into three groups: (1) low ovarian reserve (LAMH, n = 39), (2) normal ovarian reserve (NAMH, n = 80), and (3) high ovarian reserve (HAMH, n = 40). SurePrint Human miRNA array screening and reverse transcription-quantitative PCR (RT-qPCR) were respectively employed to screen and validate the miRNA abundance level in the three tested groups. Compared with NAMH, the abundance level of 34 and 98 miRNAs was found to be significantly altered in LAMH and HAMH, respectively. The abundance level of miRNAs was further validated by RT-qPCR in both, the screening samples as well as in an independent set of validation samples. The abundance levels of the validated miRNAs were significantly correlated with the AMH level. The best AUC value for the prediction of the increase and decrease in the AMH level was obtained for the miR-100-5p and miR-21-5p, respectively. The level of miRNAs abundance correlates with the level of AMH, which may serve as a tool for identifying women with a different ovarian reserve and may help to lay the ground for the development of novel diagnostic approaches.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421, Homburg, Saar, Germany.
| | - Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421, Homburg, Saar, Germany
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Simona Lucia Baus
- Department of Obstetrics and Gynecology, Saarland University, 66421, Homburg, Saar, Germany
| | - Amer Hamza
- Department of Obstetrics and Gynecology, Saarland University, 66421, Homburg, Saar, Germany.,Kantonspital Baden, Im Ergel 1, 5400, Baden, Switzerland
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421, Homburg, Saar, Germany
| | - Mohamad Hammadeh
- Department of Obstetrics and Gynecology, Saarland University, 66421, Homburg, Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbruecken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Saar, Germany
| |
Collapse
|