1
|
Bartolacci A, Busnelli A, Pagliardini L, de Girolamo S, De Santis L, Esposito S, Alteri A, Setti PEL, Papaleo E. Assessing the developmental competence of oocytes matured following rescue in vitro maturation: a systematic review and meta-analysis. J Assist Reprod Genet 2024; 41:1939-1950. [PMID: 39046561 PMCID: PMC11339015 DOI: 10.1007/s10815-024-03211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE To assess the developmental competence of oocytes matured following rescue in vitro maturation (IVM). METHODS PubMed, EmBASE, and SCOPUS were systematically searched for peer-reviewed original papers using relevant keywords and Medical Subject Heading terms. Study quality was assessed using the Newcastle-Ottawa Scale. Odds ratios with a 95% confidence interval were calculated by applying a random effects model. The primary outcomes were fertilization and blastulation rates. Secondary outcomes included abnormal fertilization, cleavage, euploidy, clinical pregnancy, and live-birth rates. RESULT Twenty-four studies were included in the meta-analysis. The oocytes matured following rescue IVM showed significantly reduced fertilization, cleavage, blastulation, and clinical pregnancy rates compared to sibling in vivo-matured oocytes. No significant differences were found for the euploidy and live-birth rates in euploid blastocyst transfer. In poor responders, a reduced fertilization rate was observed using in vitro-matured GV but not with in vitro-matured MI. A reduced cleavage rate in MI matured overnight compared to < 6 incubation hours was found. CONCLUSION Our results showed compromised developmental competence in oocytes matured following rescue IVM. However, in poor responders, rescue IVM could maximize the efficiency of the treatment. Notably, our data suggests using in vitro MI matured within 6 incubation hours. CLINICAL TRIAL REGISTRATION NUMBER CRD42023467232.
Collapse
Affiliation(s)
- Alessandro Bartolacci
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| | - Andrea Busnelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Pagliardini
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Sofia de Girolamo
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lucia De Santis
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Stefania Esposito
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Paolo Emanuele Levi Setti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
2
|
Paulsen B, Piechota S, Barrachina F, Giovannini A, Kats S, Potts KS, Rockwell G, Marchante M, Estevez SL, Noblett AD, Figueroa AB, Aschenberger C, Kelk DA, Forti M, Marcinyshyn S, Wiemer K, Sanchez M, Belchin P, Lee JA, Buyuk E, Slifkin RE, Smela MP, Fortuna PRJ, Chatterjee P, McCulloh DH, Copperman AB, Ordonez-Perez D, Klein JU, Kramme CC. Rescue in vitro maturation using ovarian support cells of human oocytes from conventional stimulation cycles yields oocytes with improved nuclear maturation and transcriptomic resemblance to in vivo matured oocytes. J Assist Reprod Genet 2024; 41:2021-2036. [PMID: 38814543 PMCID: PMC11339229 DOI: 10.1007/s10815-024-03143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.
Collapse
Affiliation(s)
- Bruna Paulsen
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Simone Kats
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Samantha L Estevez
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | - Marta Sanchez
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Pedro Belchin
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Joseph A Lee
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Erkan Buyuk
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Rick E Slifkin
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | - Alan B Copperman
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | | | | | | |
Collapse
|
3
|
Esbert M, Tao X, Ballesteros A, Yildirim RM, Scott RT, Seli E. Addition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women. Mol Hum Reprod 2024; 30:gaad048. [PMID: 38180884 DOI: 10.1093/molehr/gaad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Indexed: 01/07/2024] Open
Abstract
Both spontaneously conceived pregnancies and those achieved using assisted reproduction decline with advancing maternal age. In this study, we tested if rapamycin and/or cumulus cells (CCs) from young donors could improve oocyte maturation and euploidy rates of germinal vesicle (GV) stage oocytes obtained from older women of reproductive age. A total of 498 GVs from 201 women >38 years (40.6 ± 1.8, mean ± SD) were included. GVs were randomly assigned into five groups for rescue IVM: control (with no CCs and no rapamycin); with autologous CCs; with autologous CCs and rapamycin; with CCs from young women (<35 years); and with CCs from young women and rapamycin. After 24 h of culture, the first polar body (PB) was biopsied in metaphase II oocytes, and the cytogenetic constitution was assessed using next-generation sequencing for both oocytes and PBs. Comparable maturation rates were found (56.2%, 60.0%, 46.5%, 51.7%, and 48.5% for groups 1-5, respectively; P = 0.30). Similarly, comparable euploidy rates were observed in the five groups (41.5%, 37.8%, 47.2%, 43.6%, and 47.8% for Groups 1-5, respectively; P = 0.87). Our findings indicate that rescue IVM is effective for obtaining mature euploid oocytes in older women of reproductive age, and that incubation with rapamycin or CCs obtained from young donors does not improve the maturation or euploidy rate.
Collapse
Affiliation(s)
- Marga Esbert
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
- IVIRMA Global Research Alliance, IVIRMA Barcelona, Barcelona, Spain
| | - Xin Tao
- JUNO Genetics, Basking Ridge, NJ, USA
| | | | - Raziye Melike Yildirim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Richard T Scott
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Emre Seli
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Yang Y, Zhao C, Chen B, Yu X, Zhou Y, Ni D, Zhang X, Zhang J, Ling X, Zhang Z, Huo R. Follicular fluid C3a-peptide promotes oocyte maturation through F-actin aggregation. BMC Biol 2023; 21:285. [PMID: 38066646 PMCID: PMC10709936 DOI: 10.1186/s12915-023-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Immature cumulus-oocyte complexes are retrieved to obtain mature oocytes by in vitro maturation (IVM), a laboratory tool in reproductive medicine to obtain mature oocytes. Unfortunately, the efficiency of IVM is not satisfactory. To circumvent this problem, we therefore intended to commence with the composition of ovarian follicular fluid (FF), an important microenvironment influencing oocyte growth. It is well known that FF has a critical role in oocyte development and maturation. However, the components in human FF remain largely unknown, particularly with regard to small molecular peptides. RESULTS In current study, the follicular fluid derived from human mature and immature follicles were harvested. The peptide profiles of FF were further investigated by using combined ultrafiltration and LC-MS/MS. The differential peptides were preliminary determined by performing differentially expressed analysis. Human and mouse oocyte culture were used to verify the influence of differential peptides on oocyte development. Constructing plasmids, cell transfecting, Co-IP, PLA etc. were used to reveal the detail molecular mechanism. The results from differentially expressed peptide as well as cultured human and mouse oocytes analyses showed that highly conserved C3a-peptide, a cleavage product of complement C3a, definitely affected oocytes development. Intriguingly, C3a-peptide possessed a novel function that promoted F-actin aggregation and spindle migration, raised the percentage of oocytes at the MII stage, without increasing the chromosome aneuploidy ratio, especially in poor-quality oocytes. These effects of C3a-peptide were attenuated by C3aR morpholino inhibition, suggesting that C3a-peptide affected oocytes development by collaborating with its classical receptor, C3aR. Specially, we found that C3aR co-localized to the spindle with β-tubulin to recruit F-actin toward the spindle and subcortical region of the oocytes through specific binding to MYO10, a key regulator for actin organization, spindle morphogenesis and positioning in oocytes. CONCLUSIONS Our results provide a new perspective for improving IVM culture systems by applying FF components and also provide molecular insights into the physiological function of C3a-peptide, its interaction with C3aR, and their roles in enabling meiotic division of oocytes.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chun Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Xiaoning Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yuxi Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Danyu Ni
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Xiaolan Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu Province, 210004, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
- Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School,, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Piechota S, Marchante M, Giovannini A, Paulsen B, Potts KS, Rockwell G, Aschenberger C, Noblett AD, Figueroa AB, Sanchez M, Barrachina F, Wiemer K, Guzman L, Belchin P, Pierson Smela M, Fortuna PRJ, Chatterjee P, Tran ND, Kelk DA, Forti M, Marcinyshyn S, Smith T, McCulloh DH, Fernandez-Gonzalez MJ, Abittan B, Ortiz S, Klein JU, Klatsky P, Ordonez-Perez D, Kramme CC. Human-induced pluripotent stem cell-derived ovarian support cell co-culture improves oocyte maturation in vitro after abbreviated gonadotropin stimulation. Hum Reprod 2023; 38:2456-2469. [PMID: 37815487 PMCID: PMC10694404 DOI: 10.1093/humrep/dead205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Indexed: 10/11/2023] Open
Abstract
STUDY QUESTION Can in vitro maturation (IVM) and developmental competence of human oocytes be improved by co-culture with ovarian support cells (OSCs) derived from human-induced pluripotent stem cells (hiPSCs)? SUMMARY ANSWER OSC-IVM significantly improves the rates of metaphase II (MII) formation and euploid Day 5 or 6 blastocyst formation, when compared to a commercially available IVM system. WHAT IS KNOWN ALREADY IVM has historically shown highly variable performance in maturing oocytes and generating oocytes with strong developmental capacity, while limited studies have shown a positive benefit of primary granulosa cell co-culture for IVM. We recently reported the development of OSCs generated from hiPSCs that recapitulate dynamic ovarian function in vitro. STUDY DESIGN, SIZE, DURATION The study was designed as a basic science study, using randomized sibling oocyte specimen allocation. Using pilot study data, a prospective sample size of 20 donors or at least 65 oocytes per condition were used for subsequent experiments. A total of 67 oocyte donors were recruited to undergo abbreviated gonadotropin stimulation with or without hCG triggers and retrieved cumulus-oocyte complexes (COCs) were allocated between the OSC-IVM or control conditions (fetal-like OSC (FOSC)-IVM or media-only IVM) in three independent experimental design formats. The total study duration was 1 April 2022 to 1 July 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocyte donors between the ages of 19 and 37 years were recruited for retrieval after informed consent, with assessment of anti-Mullerian hormone, antral follicle count, age, BMI and ovarian pathology used for inclusion and exclusion criteria. In experiment 1, 27 oocyte donors were recruited, in experiment 2, 23 oocyte donors were recruited, and in experiment 3, 17 oocyte donors and 3 sperm donors were recruited. The OSC-IVM culture condition was composed of 100 000 OSCs in suspension culture with hCG, recombinant FSH, androstenedione, and doxycycline supplementation. IVM controls lacked OSCs and contained either the same supplementation, FSH and hCG only (a commercial IVM control), or FOSCs with the same supplementation (Media control). Experiment 1 compared OSC-IVM, FOSC-IVM, and a Media control, while experiments 2 and 3 compared OSC-IVM and a commercial IVM control. Primary endpoints in the first two experiments were the MII formation (i.e. maturation) rate and morphological quality assessment. In the third experiment, the fertilization and embryo formation rates were assessed with genetic testing for aneuploidy and epigenetic quality in blastocysts. MAIN RESULTS AND THE ROLE OF CHANCE We observed a statistically significant improvement (∼1.5×) in maturation outcomes for oocytes that underwent IVM with OSCs compared to control Media-IVM and FOSC-IVM in experiment 1. More specifically, the OSC-IVM group yielded a MII formation rate of 68% ± 6.83% SEM versus 46% ± 8.51% SEM in the Media control (P = 0.02592, unpaired t-test). FOSC-IVM yielded a 51% ± 9.23% SEM MII formation rate which did not significantly differ from the media control (P = 0.77 unpaired t-test). Additionally, OSC-IVM yielded a statistically significant ∼1.6× higher average MII formation rate at 68% ± 6.74% when compared to 43% ± 7.90% in the commercially available IVM control condition (P = 0.0349, paired t-test) in experiment 2. Oocyte morphological quality between OSC-IVM and the controls did not significantly differ. In experiment 3, OSC-IVM oocytes demonstrated a statistically significant improvement in Day 5 or 6 euploid blastocyst formation per COC compared to the commercial IVM control (25% ± 7.47% vs 11% ± 3.82%, P = 0.0349 logistic regression). Also in experiment 3, the OSC-treated oocytes generated blastocysts with similar global and germline differentially methylated region epigenetic profiles compared commercial IVM controls or blastocysts after either conventional ovarian stimulation. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION While the findings of this study are compelling, the cohort size remains limited and was powered on preliminary pilot studies, and the basic research nature of the study limits generalizability compared to randomized control trials. Additionally, use of hCG-triggered cycles results in a heterogenous oocyte cohort, and potential differences in the underlying maturation state of oocytes pre-IVM may limit or bias findings. Further research is needed to clarify and characterize the precise mechanism of action of the OSC-IVM system. Further research is also needed to establish whether these embryos are capable of implantation and further development, a key indication of their clinical utility. WIDER IMPLICATIONS OF THE FINDINGS Together, these findings demonstrate a novel approach to IVM with broad applicability to modern ART practice. The controls used in this study are in line with and have produced similar to findings to those in the literature, and the outcome of this study supports findings from previous co-culture studies that found benefits of primary granulosa cells on IVM outcomes. The OSC-IVM system shows promise as a highly flexible IVM approach that can complement a broad range of stimulation styles and patient populations. Particularly for patients who cannot or prefer not to undergo conventional gonadotropin stimulation, OSC-IVM may present a viable path for obtaining developmentally competent, mature oocytes. STUDY FUNDING/COMPETING INTEREST(S) A.D.N., A.B.F., A.G., B.P., C.A., C.C.K., F.B., G.R., K.S.P., K.W., M.M., P.C., S.P., and M.-J.F.-G. are shareholders in the for-profit biotechnology company Gameto Inc. P.R.J.F. declares paid consultancy for Gameto Inc. P.C. also declares paid consultancy for the Scientific Advisory Board for Gameto Inc. D.H.M. has received consulting services from Granata Bio, Sanford Fertility and Reproductive Medicine, Gameto, and Buffalo IVF, and travel support from the Upper Egypt Assisted Reproduction Society. C.C.K., S.P., M.M., A.G., B.P., K.S.P., G.R., and A.D.N. are listed on a patent covering the use of OSCs for IVM: U.S. Provisional Patent Application No. 63/492,210. Additionally, C.C.K. and K.W. are listed on three patents covering the use of OSCs for IVM: U.S. Patent Application No. 17/846,725, U.S Patent Application No. 17/846,845, and International Patent Application No.: PCT/US2023/026012. C.C.K., M.P.S., and P.C. additionally are listed on three patents for the transcription factor-directed production of granulosa-like cells from stem cells: International Patent Application No.: PCT/US2023/065140, U.S. Provisional Application No. 63/326,640, and U.S. Provisional Application No. 63/444,108. The remaining authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marta Sanchez
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | | | | | | | - Pedro Belchin
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | | | | | | | | | - David H McCulloh
- Gameto Inc., New York, NY, USA
- Biogenetics Corporation, Mountainside, NJ, USA
- Sperm and Embryo Bank of New York, New York, NY, USA
- Biogenetics Laboratory, Brooklyn, NY, USA
- ReproART, Georgian American Center for Reproductive Medicine, Tbilisi, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wei J, Luo Z, Dong X, Jin H, Zhu L, Ai J. Cut-off point of mature oocyte for routine clinical application of rescue IVM: a retrospective cohort study. J Ovarian Res 2023; 16:226. [PMID: 37993915 PMCID: PMC10664607 DOI: 10.1186/s13048-023-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The rescue in vitro mature(Rescue IVM) technique allows the use of immature oocytes collected in conventional COH to obtain more mature oocytes for fertilization through in vitro maturation. Some studies have shown that Rescue IVM could improve clinical outcomes in patients undergoing IVF/ICSI, but the effectiveness and the indications for the clinical application of this technique remain controversial. It remains to be studied whether Rescue IVM should be universally applied in all conventional IVF/ICSI cycles. METHOD This is a large retrospective cohort study that included a total of 22,135 female patients undergoing their first IVF treatment cycles. The effect of the number of mature oocytes(metaphaseII[MII]) on the cumulative live birth rate was investigated in a population with routine IVF/ICSI first. The receiver operating characteristic curve(ROC) analysis was used to explore the cut-off point of the number of MII affecting CLBR. Secondly, Patients undergoing ICSI with Rescue IVM were included in the analysis with those who underwent ICSI only during the same period, grouped according to the MII cut-off values. Multi-factor binary logistic regression and inverse probability weighting (IPW) were used to investigate whether Rescue IVM influenced the final cumulative live birth rate(CLBR). RESULTS The CLBR increased with the number of MIIoocytes (P < 0.001). The ROC analysis showed the cut-off point for the number of MIIoocytes to have a significant effect on CLBR was 9 (sensitivity 0.715, specificity 0.656). Furthermore, 912 patients who underwent ICSI with Rescue IVM were included and compared to those who underwent ICSI only during the same period, and found Rescue IVM significantly increased the number of available MIIoocytes. For patients with MII numbers < 9, Rescue IVM significantly improves their clinical pregnancy rate(55.6% vs. 46.7%, P = 0.001) and CLBR(65.4% vs. 48.1%, P < 0.001), but not for those patients with MII numbers ≥ 9. CONCLUSION This study further clarifies the candidates for the application of Rescue IVM technique: patients with an MII oocytes < 9 in a conventional IVF/ICSI cycle. In contrast, it is not necessary for patients who already have sufficient mature oocytes(≥ 9), to avoid over-medication.
Collapse
Affiliation(s)
- Jianbo Wei
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Zhongyu Luo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiyuan Dong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Huizi Jin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| | - Jihui Ai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Shani AK, Haham LM, Balakier H, Kuznyetsova I, Bashar S, Day EN, Librach CL. The developmental potential of mature oocytes derived from rescue in vitro maturation. Fertil Steril 2023; 120:860-869. [PMID: 37257719 DOI: 10.1016/j.fertnstert.2023.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To examine the developmental competence of immature oocytes in stimulated cycles, that matured after rescue in vitro maturation (IVM) compared with their sibling in vivo matured oocytes. DESIGN Retrospective cohort study. SETTING IVF clinic. PATIENTS A total of 182 patients underwent 200 controlled ovarian stimulation cycles with intracytoplasmic sperm injection cycles in which immature oocytes were retrieved and at least one mature oocyte was obtained through rescue IVM. INTERVENTION In vitro culture of immature germinal vesicle (GV) and metaphase I (MI) oocytes, retrieved in stimulated cycles. MAIN OUTCOME MEASURES Fertilization rate, cleavage rate, blastulation rate, ploidy of embryos evaluated using preimplantation genetic testing for aneuploidy, morphokinetic parameters and pregnancy outcomes. RESULTS In total, 2,288 oocytes were retrieved from 200 cycles. After denudation, 1,056 of the oocytes (46% ± 16%) were classified as metaphase II (MII). A total of 333/375 (89%) of MI oocytes and 292/540 (54%) of GV oocytes matured overnight and underwent intracytoplasmic sperm injection. The fertilization rates of matured oocytes from MI rescue IVM (R-MI) and from GV rescue IVM (R-GV) were comparable with those of their sibling MII oocytes (71% vs. 66%; 66% vs. 63%, respectively). Early cleavage rates (80% ± 35% vs. 92% ± 20%; 80% ± 42% vs. 95% ± 28%, respectively) and blastulation rates (32 ± 40% vs. 62 ± 33%; 24 ± 37% vs. 60 ± 35%, respectively) were significantly decreased in rescue IVM matured oocytes (R-oocytes)-derived zygotes, but the blastocyst (BL) euploidy rate and "good quality" BL rate were comparable with those of MII sibling-derived embryos. In addition, rescue IVM embryos showed significantly higher levels of multinucleation at the 2- and 4-cell stages, as well as higher rates of zygote direct cleavage from one to 3 to 4 cells. Overall, 21 transfers of rescue IVM embryos resulted in 3 healthy live births. CONCLUSIONS For patients with a low maturation rate and/or low numbers of mature oocytes at retrieval, rescue IVM may contribute more competent oocytes and additional viable BLs for transfer from the same stimulation cycle, maximizing the chances for pregnancy and live birth.
Collapse
Affiliation(s)
- Adi Kuperman Shani
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lilach Marom Haham
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Iryna Kuznyetsova
- CReATe Fertility Centre, Toronto, Ontario, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Erin N Day
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Salimov D, Lisovskaya T, Otsuki J, Gzgzyan A, Bogolyubova I, Bogolyubov D. Chromatin Morphology in Human Germinal Vesicle Oocytes and Their Competence to Mature in Stimulated Cycles. Cells 2023; 12:1976. [PMID: 37566055 PMCID: PMC10416848 DOI: 10.3390/cells12151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
The search for simple morphological predictors of oocyte quality is an important task for assisted reproduction technologies (ARTs). One such predictor may be the morphology of the oocyte nucleus, called the germinal vesicle (GV), including the level of chromatin aggregation around the atypical nucleolus (ANu)-a peculiar nuclear organelle, formerly referred to as the nucleolus-like body. A prospective cohort study allowed distinguishing three classes of GV oocytes among 135 oocytes retrieved from 64 patients: with a non-surrounded ANu and rare chromatin blocks in the nucleoplasm (Class A), with a complete peri-ANu heterochromatic rim assembling all chromatin (Class C), and intermediate variants (Class B). Comparison of the chromatin state and the ability of oocytes to complete meiosis allowed us to conclude that Class B and C oocytes are more capable of resuming meiosis in vitro and completing the first meiotic division, while Class A oocytes can resume maturation but often stop their development either at metaphase I (MI arrest) or before the onset of GV breakdown (GVBD arrest). In addition, oocytes with a low chromatin condensation demonstrated a high level of aneuploidy during the resumption of meiosis. Considering that the degree of chromatin condensation/compaction can be determined in vivo under a light microscope, this characteristic of the GV can be considered a promising criterion for selecting the best-quality GV oocytes in IVM rescue programs.
Collapse
Affiliation(s)
- Daniil Salimov
- Clinical Institute of Reproductive Medicine, Yekaterinburg 620014, Russia;
| | - Tatiana Lisovskaya
- Clinical Institute of Reproductive Medicine, Yekaterinburg 620014, Russia;
| | - Junko Otsuki
- Assisted Reproductive Technology Center, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan;
| | - Alexandre Gzgzyan
- Research Institute of Obstetrics, Gynecology and Reproductology Named after D. O. Ott, St. Petersburg 199034, Russia;
| | - Irina Bogolyubova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia;
- Department of Histology and Embryology Named after Prof. A.G. Knorre, St. Petersburg State Pediatric Medical University, St. Petersburg 194100, Russia
| | - Dmitry Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia;
| |
Collapse
|
9
|
Akdemir Y, Donmez Cakil Y, Selam B, Sitar ME, Cincik M. Rescue IVM of Denuded GV- and MI-Stage Oocytes of Premenopausal Rats with Oncostatin M, Insulin-like Growth Factor I, and Growth Hormone. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081247. [PMID: 36013426 PMCID: PMC9410294 DOI: 10.3390/life12081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Immature oocytes are retrieved and matured through in vitro maturation (IVM). Maturation, fertilization rates, and embryo development via IVM are all lower than those found in vitro fertilization (IVF) cycles. We investigated the effects of oncostatin M (OSM), insulin-like growth factor-1 (IGF-I), and growth hormone (GH) in rescue IVM. A total of 111 germinal vesicle (GV) and 17 metaphase I (MI) oocytes were obtained after conventional IVF from 28 female Wistar albino rats. Denuded immature oocytes were cultured in maturation medium supplemented with OSM, IGF-1, or GH. The quantities of metaphase II (MII) oocytes matured from the GV stage were 17 of 30 (56.6%), 15 of 28 (53.5%), 10 of 30 (33.3%), and 7 of 23 (30.3%), in control, OSM, IGF-I, and GH groups, respectively. Maturation rates in control and OSM groups were higher than those in IGF-I and GH groups (p = 0.001). The quantities of MII oocytes matured from MI stage were 7 of 7 (100%), 4 of 4 (100%), 1 of 1 (100%), and 1 of 5 (20%) in control, OSM, IGF-I, and GH groups, respectively. Maturation rates from MI to MII stages in control, OSM, and IGF-I groups were higher than those in the GH group (p = 0.004). Acceptable maturation rates are observed with OSM in rat oocytes in rescue IVM.
Collapse
Affiliation(s)
- Yesim Akdemir
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Yaprak Donmez Cakil
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul 34857, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Unit of ART, Acibadem Altunizade Hospital, Istanbul 34752, Turkey
- Correspondence: ; Tel.: +90-536-9796544
| | - Mustafa Erinc Sitar
- Department of Medical Biochemistry, Faculty of Medicine, Maltepe University, Istanbul 34857, Turkey
| | - Mehmet Cincik
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul 34857, Turkey
| |
Collapse
|
10
|
Hao X, Phoon J, Barbunopulos L, Sheikhi M, Palomares AR, Rodriguez-Wallberg KA. Exploring the Developmental Potential of Human Germinal Vesicle Oocytes Aiming at Fertility Preservation: Can We Increase the Yields of Competent Oocytes through IVM Combined with Vitrification? J Clin Med 2022; 11:jcm11061703. [PMID: 35330028 PMCID: PMC8949370 DOI: 10.3390/jcm11061703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
The rescue in vitro maturation (rIVM) of germinal vesicle oocytes (GVs) has been proposed to improve the total number of mature oocytes in women undergoing fertility preservation. Currently, there is no consensus about the clinical utility of this practice, and heterogeneity in the protocols used may influence the final outcomes. This study investigated the developmental potential of mature metaphase II (MII) human oocytes obtained from GVs after rIVM and the impact of applying vitrification at different timepoints either before or after rIVM. After randomization, oocytes were assigned to undergo rIVM and thereafter vitrification or intracytoplasmic sperm injection (ICSI), or to undergo direct vitrification-warming and thereafter rIVM and ICSI. The likelihood of obtaining MII oocytes was just slightly higher in the fresh rIVM group compared to the vitrification-warming-rIVM group. When comparing fresh rIVM that underwent subsequently ICSI, the fertilization and developmental rates up to the blastocyst stage were seen to be reduced in both groups that underwent vitrification either before or after rIVM. Although some blastocysts were obtained in the fresh rIVM-ICSI group, the efficacy of these methods was low overall, suggesting that the further development of protocols for IVM conducted early after denudation is needed to improve the final results of rIVM aiming at fertility preservation.
Collapse
Affiliation(s)
- Xia Hao
- Department of Oncology and Pathology, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden;
- Laboratory of Translational Fertility Preservation, BioClinicum, SE-171 64 Stockholm, Sweden
| | - Jessie Phoon
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86 Stockholm, Sweden; (J.P.); (L.B.); (M.S.)
| | - Lina Barbunopulos
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86 Stockholm, Sweden; (J.P.); (L.B.); (M.S.)
| | - Mona Sheikhi
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86 Stockholm, Sweden; (J.P.); (L.B.); (M.S.)
| | - Arturo Reyes Palomares
- Department of Oncology and Pathology, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden;
- Laboratory of Translational Fertility Preservation, BioClinicum, SE-171 64 Stockholm, Sweden
- Correspondence: (A.R.P.); (K.A.R.-W.)
| | - Kenny A. Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden;
- Laboratory of Translational Fertility Preservation, BioClinicum, SE-171 64 Stockholm, Sweden
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86 Stockholm, Sweden; (J.P.); (L.B.); (M.S.)
- Correspondence: (A.R.P.); (K.A.R.-W.)
| |
Collapse
|
11
|
Buratini J, Soares ACS, Barros RG, Dellaqua TT, Lodde V, Franciosi F, Dal Canto M, Renzini MM, Luciano AM. Physiological parameters related to oocyte nuclear differentiation for the improvement of IVM/IVF outcomes in women and cattle. Reprod Fertil Dev 2022; 34:27-35. [PMID: 35231269 DOI: 10.1071/rd21278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro maturation (IVM) has been applied in numerous different contexts and strategies in humans and animals, but in both cases it represents a challenge still far from being overcome. Despite the large dataset produced over the last two decades on the mechanisms that govern antral follicular development and oocyte metabolism and differentiation, IVM outcomes are still unsatisfactory. This review specifically focuses on data concerning the potential consequences of using supraphysiological levels of FSH during IVM, as well as on the regulation of oocyte chromatin dynamics and its utility as a potential marker of oocyte developmental competence. Taken together, the data revisited herein indicate that a significant improvement in IVM efficacy may be provided by the integration of pre-OPU patient-specific protocols preparing the oocyte population for IVM and more physiological culture systems mimicking more precisely the follicular environment that would be experienced by the recovered oocytes until completion of metaphase II.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre - Eugin Group, Istituti Clinici Zucchi, Monza, Italy; and Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | | | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre - Eugin Group, Istituti Clinici Zucchi, Monza, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Rodríguez-Varela C, Labarta E. Does Coenzyme Q10 Supplementation Improve Human Oocyte Quality? Int J Mol Sci 2021; 22:ijms22179541. [PMID: 34502447 PMCID: PMC8431086 DOI: 10.3390/ijms22179541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Acquiring oocyte competence requires optimal mitochondrial function and adequate ATP levels. In this context, CoQ10 supplementation may improve human oocyte quality and subsequent reproductive performance given its role in ATP synthesis and mitochondrial protection from ROS oxidative damage. In infertility treatments, CoQ10 therapy can be orally supplied to promote a more favorable environment for oocyte development in vivo or by its addition to culture media in an attempt to improve its quality in vitro. Human clinical studies evaluating the impact of CoQ10 on reproductive performance are summarized in this review, although the available data do not clearly prove its ability to improve human oocyte quality. The main objective is to provide readers with a complete overview of this topic's current status as well as the keys for potential future research lines that may help to take this therapy to clinical practice. Indeed, further clinical trials are needed to confirm these results along with molecular studies to evaluate the impact of CoQ10 supplementation on oxidative stress status and mitochondrial function in human gametes.
Collapse
Affiliation(s)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain;
- IVIRMA Valencia, 46015 Valencia, Spain
| |
Collapse
|
13
|
De Vos M, Grynberg M, Ho TM, Yuan Y, Albertini DF, Gilchrist RB. Perspectives on the development and future of oocyte IVM in clinical practice. J Assist Reprod Genet 2021; 38:1265-1280. [PMID: 34218388 PMCID: PMC8266966 DOI: 10.1007/s10815-021-02263-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Oocyte in vitro maturation (IVM) is an assisted reproductive technology designed to obtain mature oocytes following culture of immature cumulus-oocyte complexes collected from antral follicles. Although IVM has been practiced for decades and is no longer considered experimental, the uptake of IVM in clinical practice is currently limited. The purpose of this review is to ensure reproductive medicine professionals understand the appropriate use of IVM drawn from the best available evidence supporting its clinical potential and safety in selected patient groups. This group of scientists and fertility specialists, with expertise in IVM in the ART laboratory and/or clinic, explore here the development of IVM towards acquisition of a non-experimental status and, in addition, critically appraise the current and future role of IVM in human ART.
Collapse
Affiliation(s)
- Michel De Vos
- Centre for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Sechenov University, Moscow, Russia
| | - Michaël Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Antoine Béclère University Hospital, Clamart, Clamart, France
- Paris-Sud University, Le Kremlin Bicêtre, France
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - David F Albertini
- Bedford Research Foundation, 124 South Road, Bedford, MA, 01730, USA
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|