1
|
Marquez-Curtis LA, Turner AR, Sridharan S, Ratajczak MZ, Janowska-Wieczorek A. The ins and outs of hematopoietic stem cells: studies to improve transplantation outcomes. Stem Cell Rev Rep 2011; 7:590-607. [PMID: 21140298 DOI: 10.1007/s12015-010-9212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deciphering the mechanisms of hematopoietic stem/progenitor cell (HSPC) mobilization and homing is important for the development of strategies to enhance the efficacy of HSPC transplantation and achieve the full potential of HSPC-based cellular therapy. Investigation of these mechanisms has revealed interdependence among the various molecules, pathways and cellular components involved, and underscored the complex nature of these two processes. This review summarizes recent progress in identifying the specific factors implicated in HSPC mobilization and homing, with emphasis on our own work. Particularly, we will discuss our studies on stromal cell-derived factor-1 and its interaction with its receptor CXCR4, proteases (matrix metalloproteinases and carboxypeptidase M), complement proteins (C1q, C3a, C5a, membrane attack complex), sphingosine-1-phosphate, and pharmacologic agents such as the histone deacetylase inhibitor valproic acid and hyaluronic acid.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Research & Development, Canadian Blood Services, CBS Edmonton Centre, 8249-114 St. NW, Edmonton, T6G 2R8, Alberta, Canada
| | | | | | | | | |
Collapse
|
2
|
Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 2010; 111:253-80. [PMID: 21077606 DOI: 10.1021/cr1001832] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J. Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24:1667-75. [PMID: 20703253 DOI: 10.1038/leu.2010.162] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs), as well as other types of stem cells, circulate under steady-state conditions at detectable levels in peripheral blood (PB), with their numbers increasing in response to stress, inflammation and tissue/organ injury. This mobilization process may be envisioned as a danger-sensing response mechanism triggered by hypoxia or mechanical or infection-induced tissue damage that recruits into PB different types of stem cells that have a role in immune surveillance and organ/tissue regeneration. Mobilization is also significantly enhanced by the administration of pharmacological agents, which has been exploited in hematological transplantology as a means to obtain HSPCs for hematopoietic reconstitution. In this review we will present mounting evidence that innate immunity orchestrates this evolutionarily conserved mechanism of HSPC mobilization.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24:573-82. [PMID: 20033053 PMCID: PMC2838235 DOI: 10.1038/leu.2009.271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) induced by granulocyte-colony stimulating factor (G-CSF) and C5 cleavage plays an important role in optimal egress of HSPCs. In the current work, we explored whether CC is involved in mobilization of HSPCs induced by the CXCR4 antagonist, AMD3100. To address this question, we performed mobilization studies in mice that display a defect in the activation of the proximal steps of CC (Rag−/−, SCID, C2.Cfb−/−) as well as in mice that do not activate the distal steps of CC (C5−/−). We noticed that proximal CC activation-deficient mice (above C5 level), in contrast to distal step CC activation-deficient C5−/− ones mobilize normally in response to AMD3100 administration. We hypothesized that this discrepancy in mobilization could be explained by AMD3100 activating C5 in Rag−/−, SCID, C2.Cfb−/− animals in a non-canonical mechanism involving activated granulocytes. To support this granulocytes i) as first egress from BM and ii) secrete several proteases that cleave/activate C5 in response to AMD3100. We conclude that AMD3100-directed mobilization of HSPCs, similarly to G-CSF-induced mobilization, depends on activation of CC; however, in contrast to G-CSF, AMD3100 activates the distal steps of CC directly at the C5 level. Overall, these data support that C5 cleavage fragments and distal steps of CC activation are required for optimal mobilization of HSPCs.
Collapse
|
5
|
Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp (Warsz) 2009; 57:269-78. [PMID: 19578812 DOI: 10.1007/s00005-009-0037-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/30/2009] [Indexed: 01/21/2023]
Abstract
The mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow into peripheral blood (PB) is still not fully understood. Different chemokines, cytokines, growth factors, and neurotransmitters have been described that facilitate this process. However, mounting evidence suggests that mobilization of HSPCs is a part of the immune response and is mediated by innate immunity. We discuss evidence showing that complement system cleavage fragments play a crucial role in both the retention and mobilization of HSPCs by modulating their responsiveness to stromal-derived growth factor-1 (SDF-1) gradient (by C3-derived anaphylatoxins) and by modulating the release of granulocytes into PB that subsequently facilitate the egress of HSPCs (by C5-derived anaphylatoxins).
Collapse
|
6
|
Sinitsyn Y, Malone A, Mandeli J, Grosskreutz C, Osman K, Scigliano E, Shi P, Isola L. Combined bone marrow and peripheral blood progenitor cell autografts for patients with poor mobilization. Cytotherapy 2009; 11:457-63. [DOI: 10.1080/14653240902849770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Kim DH, Jamal N, Saragosa R, Loach D, Wright J, Gupta V, Kuruvilla J, Lipton JH, Minden M, Messner HA. Similar Outcomes of Cryopreserved Allogeneic Peripheral Stem Cell Transplants (PBSCT) Compared to Fresh Allografts. Biol Blood Marrow Transplant 2007; 13:1233-43. [PMID: 17889361 DOI: 10.1016/j.bbmt.2007.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/05/2007] [Indexed: 11/22/2022]
Abstract
The BMT program at Princess Margaret Hospital performed 105 transplants using cryopreserved peripheral blood stem cells (PBSC) from related allogeneic donors. The outcomes were compared with those of a historic control of 106 patients transplanted with freshly procured PBSC. The infusions were tolerated with limited toxicity related to nausea/vomiting or bradycardia, correlated with the total amount of DMSO infused. The average viability of the total nucleated cell (TNC) population after thawing was 71%. The survival of clonogenic progenitors amounted to 75% for colony-forming unit-granulocyte-macrophage (CFU-GM), 69% for burst-forming units erythroid (BFU-E), and 78% for colony-forming units granulocyte-erythrocyte-monocyte-megakaryocyte (CFU-GEMM). In contrast, colony-forming units megakaryocyte (CFU-MEG) was significantly more cryosensitive with recovery rates of 39%. The number of viable CD34(+) cells transplanted was correlated with the number of transplanted viable CFU-GM (P < .001), BFU-E (P < .001), CFU-MEG (P < .001), and CFU-GEMM (P = .049), but not with the TNC dose. The number of transplanted CD34(+) cells was correlated with engraftment of neutrophils (P = .012) and platelets (P = .013). The outcomes of cryopreseved or fresh PBSC transplants (PBSCT) with respect to engraftment of neutrophils (P = .178) and platelets (P = .785), lymphocyte recovery (P = .926), acute (P = .113), and chronic graft-versus-host disease (P = .673), recurrence (P = .295), nonrelapse mortality (P = .340), and overall survival (P = .668) were not significantly different. It is therefore reasonable to consider the option of cryopreserved allografts.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Hematology/Medical Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25:3093-100. [PMID: 17717064 DOI: 10.1634/stemcells.2007-0525] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complement (C) and innate immunity emerge as important and underappreciated modulators of mobilization of hematopoietic stem/progenitor cells (HSPC). We reported that (a) C becomes activated in bone marrow (BM) during granulocyte-colony-stimulating factor (G-CSF)-induced mobilization by the classic immunoglobulin (Ig)-dependent pathway and that (b) C3 cleavage fragments increase the responsiveness of HSPC to a stromal derived factor-1 gradient. Since patients suffering from severe combined immunodeficiency (SCID) mobilize poorly, we hypothesized that this could be directly linked to the lack of C activating Ig in these patients. In the current study to better elucidate the role of C activation in HSPC mobilization, we mobilized mice that lack Ig (RAG2, SCID, and Jh) by G-CSF or zymosan, compounds that activate C by the classic Ig-dependent and the alternative Ig-independent pathways, respectively. In addition, we evaluated mobilization in C5-deficient animals. Mobilization was evaluated by measuring the number of colony-forming unit-granulocyte macrophage and leukocytes circulating in peripheral blood. We found that (a) G-CSF- but not zymosan-induced mobilization was severely reduced in RAG2, SCID, and Jh mice; (b) impaired G-CSF-induced mobilization was restored after infusion of purified wild-type Ig; and (c) mobilization was severely reduced in C5-deficient mice. These data provide strong evidence that the C system plays a pivotal role in mobilization of HSPC and that egress of HSPC from BM occurs as part of an immune response. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ryan Reca
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Syková E, Jendelová P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 2007; 14:1336-42. [PMID: 17396130 DOI: 10.1038/sj.cdd.4402140] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells have been intensively studied for their potential use in cell therapies for neurodegenerative diseases, ischemia and traumatic injuries. One of the most promising cell sources for autologous cell transplantation is bone marrow, containing a heterogenous cell population that can be roughly divided into hematopoietic stem and progenitor cells and mesenchymal stem cells (MSCs). MSCs are multipotent progenitor cells that, in the case of severe tissue ischemia or damage, can be attracted to the lesion site, where they can secrete bioactive molecules, either naturally or through genetic engineering. They can also serve as vehicles for delivering therapeutic agents. Mobilized from the marrow, sorted or expanded in culture, MSCs can be delivered to the damaged site by direct or systemic application. In addition, MSCs can be labeled with superparamagnetic nanoparticles that allow in vivo cell imaging. Magnetic resonance imaging (MRI) is thus a suitable method for in vivo cell tracking of transplanted cells in the host organism. This review will focus on cell labeling for MRI and the use of MSCs in experimental and clinical studies for the treatment of brain and spinal cord injuries.
Collapse
Affiliation(s)
- E Syková
- Department of Neuroscience, Institute of Experimental Medicine ASCR, Prague, Czech Republic.
| | | |
Collapse
|
10
|
Chang AH, Sadelain M. The Genetic Engineering of Hematopoietic Stem Cells: the Rise of Lentiviral Vectors, the Conundrum of the LTR, and the Promise of Lineage-restricted Vectors. Mol Ther 2007; 15:445-56. [PMID: 17228317 DOI: 10.1038/sj.mt.6300060] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent studies on the integration patterns of different categories of retroviral vectors, the genotoxicity of long-terminal repeats (LTRs) and other genetic elements, the rise of lentiviral technology and the emergence of regulated vector systems providing tissue-restricted transgene expression and RNA interference, are profoundly changing the landscape of stem cell-based therapies. New developments in vector design and an increasing understanding of the mechanisms underlying insertional oncogenesis are ushering in a new phase in hematopoietic stem cell (HSC) engineering, thus bringing the hitherto exclusive reliance on LTR-driven, gamma-retroviral vectors to an end. Based on their ability to transduce non-dividing cells and their genomic stability, lentiviral vectors offer new prospects for the manipulation of HSCs. Tissue-specific vectors, as exemplified by globin vectors, not only provide therapeutic efficacy, but may also enhance safety, insofar that they restrict transgene expression in stem cells, progenitor cells and blood cells in all but the transcriptionally targeted lineage. This review provides a survey of these advances as well as several remaining challenges, focusing in particular on the importance of achieving adequate levels of protein expression from a limited number of vector copies per cell-ideally one to two.
Collapse
Affiliation(s)
- Alex H Chang
- Laboratory of Gene Transfer and Gene Expression, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
11
|
Ings SJ, Balsa C, Leverett D, Mackinnon S, Linch DC, Watts MJ. Peripheral blood stem cell yield in 400 normal donors mobilised with granulocyte colony-stimulating factor (G-CSF): impact of age, sex, donor weight and type of G-CSF used. Br J Haematol 2006; 134:517-25. [PMID: 17018030 DOI: 10.1111/j.1365-2141.2006.06223.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mobilised peripheral blood is now the main source of stem cells collected from normal donors. We report our experience of mobilising and collecting 400 normal healthy donors using standardised procedures and techniques. Target recipient doses were reached with one aphaeresis in 63% of donors and with two aphereses in 81% of donors. Approximately 2% of donors yielded such low progenitor values that they were termed 'poor mobilisers'. There were minor effects of donor age, weight and sex and where possible, larger male donors under the age of 55 years should be selected. Two forms of granulocyte colony-stimulating factor (G-CSF) were used at the same dose and no significant difference was seen in the yield of CD34+ cells collected/l of blood processed. However, a greater number of granulocyte-macrophage colony-forming cells were harvested using lenograstim (glycosylated G-CSF) compared with filgrastim (non-glycosylated G-CSF; P = 0.002). CD34+ cell yields were also measured halfway through the aphaeresis procedure. This was found to be highly predictive of final yield and facilitated distribution of the stem cell product to other centres. The observation that CD34+ yields did not decline in the second half compared with the first half of aphaeresis suggests that the circulating cell numbers are not static.
Collapse
Affiliation(s)
- Stuart J Ings
- Royal Free and University College London Medical School, London, UK
| | | | | | | | | | | |
Collapse
|