1
|
Ogbodo UC, Salimat S, Bodun DS, Balogun TA, Omoboyowa DA. Design of small molecules for CDK-2 inhibition in colorectal cancer based on substructure search. J Biomol Struct Dyn 2025; 43:1305-1315. [PMID: 38088360 DOI: 10.1080/07391102.2023.2291546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
The global frequency of colorectal cancer motivates extensive drug discovery efforts. CDK2, a key member of the CDK family, has been linked to tumor progression, unregulated cell proliferation, and growth promotion. Water-soluble flavonoids with a fast metabolism called anthocyanins have been shown to have a variety of pharmacological properties, including anti-cancer properties. This study aims to find possible CDK2 inhibitors from Anthocyanin-like molecules. Anthocyanins sourced from PubChem were screened using a virtual screening approach that included a KNIME workflow, QSAR-model, Pharmacophore hypothesis, and a structure-based screening to identify compounds with a better binding affinity and predicted bioactivity compared to the standard, Sorafenib. The top compounds were subjected to a 100 ns MD simulation to confirm their stability at the active site. Compounds 1-5 were shown to have higher binding affinity and bioactivity in this study. These substances interacted with the critical amino acids (LEU 83, ASP 145 and LYS 89) at CDK2's active site. Compared to the reference with a pIC50 value of 6.003 nM, the top compounds listed have superior predicted bioactivity ranging from 6.539 to 6.36 nM. Also, ADMET predictions predicted that Compounds 1-5 were not carcinogenic and not a p-glycoprotein substrate. MD simulation also validated Compound 1's stability at the active site compared to the standard. This study uncovers potential CDK2 inhibitors with good binding affinities, shedding light on their interactions with the target protein. While promising, further in vivo and in vitro investigations are essential to validate the anticancer potential of these compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Uchechukwu C Ogbodo
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sofela Salimat
- Department of Chemistry, University of Lagos, Lagos, Nigeria
| | - Damilola S Bodun
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Toheeb A Balogun
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Damilola A Omoboyowa
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
2
|
Sang YH, Luo CY, Huang BT, Wu S, Shu J, Lan CG, Zhang F. Elevated origin recognition complex subunit 6 expression promotes non-small cell lung cancer cell growth. Cell Death Dis 2024; 15:700. [PMID: 39349930 PMCID: PMC11442828 DOI: 10.1038/s41419-024-07081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Exploring novel targets for non-small cell lung cancer (NSCLC) remains of utmost importance. This study focused on ORC6 (origin recognition complex subunit 6), investigating its expression and functional significance within NSCLC. Analysis of the TCGA-lung adenocarcinoma database revealed a notable increase in ORC6 expression in lung adenocarcinoma tissues, correlating with reduced overall survival, advanced disease stages, and other key clinical parameters. Additionally, in patients undergoing surgical resection of NSCLC at a local hospital, ORC6 mRNA and protein levels were elevated in NSCLC tissues while remaining low in adjacent normal tissues. Comprehensive bioinformatics analyses across various cancers suggested that ORC6 might play a significant role in crucial cellular processes, such as mitosis, DNA synthesis and repair, and cell cycle progression. Knocking down ORC6 using virus-delivered shRNA in different NSCLC cells, both primary and immortalized, resulted in a significant hindrance to cell proliferation, cell cycle progression, migration and invasion, accompanied by caspase-apoptosis activation. Similarly, employing CRISPR-sgRNA for ORC6 knockout (KO) exhibited significant anti-NSCLC cell activity. Conversely, increasing ORC6 levels using a viral construct augmented cell proliferation and migration. Silencing or knockout of ORC6 in primary NSCLC cells led to reduced expression of several key cyclins, including Cyclin A2, Cyclin B1, and Cyclin D1, whereas their levels increased in NSCLC cells overexpressing ORC6. In vivo experiments demonstrated that intratumoral injection of ORC6 shRNA adeno-associated virus markedly suppressed the growth of primary NSCLC cell xenografts. Reduced ORC6 levels, downregulated cyclins, and increased apoptosis were evident in ORC6-silenced NSCLC xenograft tissues. In summary, elevated ORC6 expression promotes NSCLC cell growth.
Collapse
Affiliation(s)
- Yong-Hua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Ying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China
| | - Bing-Tao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Jian Shu
- Department of Thoracic and Cardiovascular Surgery, Taicang Affiliated Hospital of Soochow University The First People's Hospital of Taicang, Taicang, China.
| | - Chang-Gong Lan
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China.
| | - Fuquan Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, Nantong, China.
| |
Collapse
|
3
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Chen JLY, Pan CK, Lin LC, Tsai CY, Kuo CY, Huang YS, Lin YL. Therapeutic efficacy of cyclin-dependent kinase inhibition in combination with ionizing radiation for lung cancer. Int J Radiat Biol 2023; 99:1257-1266. [PMID: 36598432 DOI: 10.1080/09553002.2023.2161658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate the therapeutic efficacy of cyclin-dependent kinase (CDK) inhibition in combination with ionizing radiation for lung cancer. MATERIALS AND METHODS Human lung adenocarcinoma (A549) and squamous cell carcinoma (H520) cells were used to evaluate the therapeutic efficacy of CDK inhibition in combination with ionizing radiation in vitro using colony formation assay, γH2AX immunofluorescence staining, western blotting, and cell cycle phase analysis. We also performed in vivo evaluations of ectopic tumor growth. RESULTS In vitro pretreatment with the CDK inhibitor, seliciclib, before irradiation significantly decreased the survival of A549 and H520 cells in a dose-dependent manner. Although CDK inhibition alone did not increase the intensity of γH2AX foci, its combination with ionizing radiation increased DNA double-strand breaks, as shown by γH2AX immunofluorescence staining and western blotting. The combination of CDK inhibition and ionizing radiation-induced G2/M arrest and increased apoptosis, as evidenced by the increased proportion of cells in G2/M arrest, subG1 apoptotic population, and expression of apoptotic markers (cleaved PARP-1 and cleaved caspase-3). Mechanistic studies showed reduced expression of cyclin A with combined treatment, indicating cell cycle shifting effects. An in vivo xenograft model showed that the combination of CDK inhibition and ionizing radiation delayed xenograft tumor growth, and increased the proportion of cleaved PARP-1- and cleaved caspase-3-positive cells, compared to either treatment alone. CONCLUSIONS We provide preclinical tumoricidal evidence that the combination of CDK inhibition and ionizing radiation is an efficacious treatment for lung cancer.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Cheng Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Sen Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Al-Huseini I, Sirasanagandla SR, Babu KS, Sofin RGS, Das S. Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Curr Med Chem 2023; 30:1502-1528. [PMID: 35078392 DOI: 10.2174/0929867329666220117114306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Kondaveeti Suresh Babu
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| | | | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
6
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
7
|
Gu X, Shen H, Bai W, Xiang Z, Li X, Zhang R, Shi F, Li H, Zhu G, Guo S. Endometrial cancer prognosis prediction using correlation models based on CDK family genes. Front Genet 2022; 13:1021600. [PMID: 36299580 PMCID: PMC9589062 DOI: 10.3389/fgene.2022.1021600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in cell division. Given that abnormal cell proliferation caused by dysregulation of cell division is one of the major causes of endometrial cancer (EC), it is important to elucidate the role of CDK family genes in the diagnosis and prognosis of EC. In this study, The Cancer Genome Atlas (TCGA) database was used to analyze the frequency of copy number variations and somatic mutations in 26 CDK family genes. Subsequently, the expression of these genes in EC was assessed, and their relationship with overall survival (OS) was examined via Kaplan–Meier analysis to assess their prognostic significance. A prognostic model based on seven CDK genes was constructed using Lasso and Cox regression, and the predictive performance of the model was analyzed using Kaplan–Meier analysis and column line plots. The correlation between CDK genes and immune cells was also examined. Patients with EC in the high-risk group had a poorer prognosis. The results of qRT-PCR and immunohistochemical analyses validated that CDK16 is highly expressed in EC tissues. Patients with EC with high CDK16 expression had worse 10-year OS than patients with low CDK16 expression. These findings suggest that the prognostic model constructed based on CDK genes can help to develop individualized and targeted treatment strategies for patients with EC.
Collapse
Affiliation(s)
- Xianhua Gu
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Honghong Shen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenqi Bai
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng Xiang
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rong Zhang
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fan Shi
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huiyuan Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guangzheng Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Suyang Guo
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Suyang Guo,
| |
Collapse
|
8
|
Ashok Kumar P, Graziano SL, Danziger N, Pavlick D, Severson EA, Ramkissoon SH, Huang RSP, Decker B, Ross JS. Genomic landscape of non-small-cell lung cancer with methylthioadenosine phosphorylase (MTAP) deficiency. Cancer Med 2022; 12:1157-1166. [PMID: 35747993 PMCID: PMC9883541 DOI: 10.1002/cam4.4971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION New treatment strategies for advanced non-small-cell lung carcinoma (NSCLC) include synthetic lethality targets focused on protein arginine methyl transferases such as PRMT5 that exploit the impact of genomic loss of methylthioadenosine phosphorylase (MTAP). METHODS Twenty nine thousand three hundred seventy nine advanced NSCLC cases underwent hybrid-capture based comprehensive genomic profiling between June 1, 2018 and May 31, 2020. PD-L1 expression was determined by immunohistochemistry (Dako 22C3 PharmDx assay). RESULTS 13.4% (3928/29,379) NSCLC cases exhibited MTAP loss distributed in adenocarcinoma (59%), squamous cell carcinoma (22%), NSCLC not otherwise specified (16%), and 1% each for large-cell neuroendocrine, sarcomatoid, and adenosquamous carcinoma. Statistically significant differences in mitogenic driver alterations included more KRAS G12C mutations in MTAP-intact versus MTAP-lost (12% vs. 10%, p = 0.0003) and fewer EGFR short variant mutations in MTAP-intact versus MTAP-lost NSCLC (10% vs. 13%, p < 0.0001). Statistically significant differences in currently untargetable genomic alterations included higher frequencies of TP53 (70% vs. 63%, p < 0.0001) and RB1 inactivation (10% vs. 2%, p < 0.0001) in MTAP-intact compared to MTAP-lost NSCLC. SMARCA4 inactivation (7% vs. 10%, p < 0.0001) was less frequent in MTAP-intact versus MTAP-lost NSCLC. Alterations in ERBB2, MET, ALK, ROS1, and NTRK1 did not significantly differ between the two groups. Predictors of immunotherapy efficacy were higher in MTAP-intact versus MTAP-lost NSCLC including tumor mutational burden (9.4 vs. 8.6 mut/Mb, p = 0.001) and low (30% vs. 28%, p = 0.01) and high PD-L1 (32% vs. 30%, p = 0.01) expression. Alterations in biomarkers potentially predictive of immune checkpoint inhibitor resistance (STK11, KEAP1, and MDM2) were similar in the two groups. CONCLUSIONS MTAP loss occurs in 13% of NSCLC, supporting the development of targeted therapies to exploit PRMT5 hyper-dependence. MTAP loss is accompanied by small differences in targeted and immunotherapy options which may impact future combination strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jeffrey S. Ross
- Upstate Cancer CenterUpstate Medical UniversitySyracuseNew YorkUSA,Foundation MedicineCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Ke Y, Liao CG, Zhao ZQ, Li XM, Lin RJ, Yang L, Zhang HL, Kong LM. Combining a CDK4/6 Inhibitor With Pemetrexed Inhibits Cell Proliferation and Metastasis in Human Lung Adenocarcinoma. Front Oncol 2022; 12:880153. [PMID: 35686110 PMCID: PMC9172583 DOI: 10.3389/fonc.2022.880153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background Recent clinical trials of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in human lung adenocarcinoma (LUAD) have not achieved satisfactory results. The disappointing results of single-drug treatments have prompted studies about synergistic therapies of CDK4/6i with other drugs. We aimed to test the anti-tumor effect of ribociclib (a CDK4/6i) combined with pemetrexed on LUAD and the potential mechanisms. Methods Cell lines were exposed to ribociclib and pemetrexed at different doses. Antitumor effects were measured using growth inhibition. Cell cycle distribution and apoptosis were evaluated using flow cytometry. Cell migration and invasion were measured using wound healing and transwell invasion assays, respectively. The expression levels of proteins were analyzed using western blotting. Mice xenograft models were used for validation in vivo. Results Synergism was associated with a combination of cell cycle effects from both agents. Cell cycle analysis revealed that pemetrexed blocked cells in the S phase, whereas ribociclib arrested cells in the G1 phase. Concomitant treatment with pemetrexed and ribociclib resulted in a significantly stronger antitumor ability than treatment alone. We also found that ribociclib strongly enhanced the pro-apoptotic activity of pemetrexed via the caspase/bcl-2 signaling pathway. In addition, we report for the first time that combination treatment with ribociclib and pemetrexed significantly inhibits the migration and invasion of LUAD cells. Conclusions Combining ribociclib and pemetrexed showed a powerful ability to inhibit cancer proliferation, invasion, and metastasis, and it holds potential as a novel effective combinative therapy for patients with LUAD.
Collapse
Affiliation(s)
- Yuan Ke
- Department of Oncology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Cheng-Gong Liao
- Department of Oncology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Zheng-Qing Zhao
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Min Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Military Medical University, Xi'an, China
| | - Rong-Jie Lin
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - He-Long Zhang
- Department of Oncology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Ling-Min Kong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Kaewjanthong P, Sooksai S, Sasano H, Hutvagner G, Bajan S, McGowan E, Boonyaratanakornkit V. Cell-penetrating peptides containing the progesterone receptor polyproline domain inhibits EGF signaling and cell proliferation in lung cancer cells. PLoS One 2022; 17:e0264717. [PMID: 35235599 PMCID: PMC8890653 DOI: 10.1371/journal.pone.0264717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Panthita Kaewjanthong
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
| | - Sarah Bajan
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Shan G, Bi G, Bian Y, Valeria B, Zeng D, Zhang H, Yao G, Zhang Y, Fan H, Zhan C. Genomic And Tumor Microenvironment Differences Between Cell Cycle Progression Pathway Altered/Non-Altered Patients With Lung Adenocarcinoma. Front Oncol 2022; 12:843528. [PMID: 35296002 PMCID: PMC8919059 DOI: 10.3389/fonc.2022.843528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundIdentified as a hallmark of cancer, the dysregulated cell cycle progression plays an important role in the promotion and progression of lung adenocarcinoma (LUAD). However, the genomic and microenvironment differences between cell cycle progression pathway altered/non-altered LUAD patients remain to be elucidated.Materials and MethodsData of this study were obtained from The Cancer Genome Atlas (TCGA), including simple nucleotide variation, copy number variation (CNV), RNA-seq gene expression, miRNA expression, survival, and clinical information. Besides, 34 LUAD samples from our institution were used as a validation cohort. Differentially expressed genes (DEGs), enrichment analysis, and immune cell infiltration were detected. At last, we built a LASSO-binary Logistic regression model to predict the cell-cycle-related gene mutation (CDKN2A, CCND1, CDK4, CCNE1, and RB1) in LUAD patients and further verified it in the samples from our institution.ResultsBased on the cell cycle progression pathway status, the LUAD patients were divided into the mutation (n=322) and wild (n=46) groups. Compared to the wild group, the mutation group had a higher mutational load and CNV. Among the 16684 protein-coding genes analyzed, 302 were upregulated, and 354 were downregulated in the mutation group. Enrichment analysis indicated that these DEGs were closely related to metabolism items. After performing immune cell infiltration analysis of 22 immune cells, we found the proportion of 5 immune cells such as monocytes (P<0.01) and dendritic cells (P<0.01) were higher in the wild group. Finally, a cell-cycle-related 15-signature model was built by LASSO-Logistic regression analysis, which could predict the cell cycle progression pathway-related gene mutation (CDKN2A, CCND1, CDK4, CCNE1, and RB1) in LUAD patients. The validation cohorts showed the sensitivity and specificity of this model were 0.667 and 0.929, respectively.ConclusionThe genomic and microenvironment characteristics differed between the cell cycle progression pathway altered/non-altered patients with LUAD. Our findings may provide new insight into personalized treatment for LUAD patients.
Collapse
Affiliation(s)
- Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Besskaya Valeria
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yi Zhang, ; Hong Fan,
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
- *Correspondence: Yi Zhang, ; Hong Fan,
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
El Sayed R, El Darsa H. Therapeutic Modalities in Small Cell Lung Cancer: a paradigm shift after decades of quiescence. Expert Opin Pharmacother 2022; 23:583-597. [PMID: 35176957 DOI: 10.1080/14656566.2022.2042515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is known to be the most aggressive of all thoracic malignancies, notoriously known for its very poor prognosis. Platinum based chemotherapy has been the standard of care for decades. Despite years of research, no treatment novelties with significant impact on survival have been achieved until recently. The last few years have witnessed light at the end of the tunnel with immunotherapy proving to improve survival. Nevertheless, responses were not homogeneous in all subgroups, and finding who would best benefit from treatment remains unanswered. Multiple limitations exist, and the quest for optimal biomarkers seemed unfruitful until the discovery of different SCLC phenotypes. AREAS COVERED In this review, the authors briefly discuss SCLC phenotypes and biomarker assays. Then, the authors continue with the main trials of SCLC treatment using chemotherapy, immunotherapy and targeted treatment in the front-line or subsequent line settings. EXPERT OPINION Research has been extensively implemented to better understand the biology of SCLC, and test for the optimal use of immunotherapy in patients with SCLC, as well as to enhance responses via possible combinations. Targeted mechanisms of action have also been attempted; yet no solid proof of efficacy has been established.
Collapse
Affiliation(s)
- Rola El Sayed
- Centre Hospitalier de l' Université de Montréal, Université de Montréal, Montréal, Quebec, Ca
| | - Haidar El Darsa
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Ca
| |
Collapse
|
13
|
Yang Y, Yuan G, Xie H, Wei T, Zhu D, Zhu Y, Zheng S. CDK14 expression is elevated in patients with non-small cell lung cancer and correlated with poor prognosis. J Int Med Res 2021; 49:3000605211013199. [PMID: 34637340 PMCID: PMC8516383 DOI: 10.1177/03000605211013199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the clinical significance of cyclin-dependent kinase 14 (CDK14) expression in patients with non-small cell lung cancer (NSCLC). Methods The present prospective observational study included 193 patients diagnosed with NSCLC between January 2010 and December 2014. NSCLC tumor tissues and paired paracancerous normal tissues were obtained from all patients. CDK14, thyroid transcription factor 1 (TTF-1), cytokeratin 5/6 (CK5/6), and Ki67 expression was measured via immunohistochemistry (IHC) Results CDK14 staining was strong (>3) in 129 patients (66.49%) and weak (≤3) in 64 patients (33.16%). The mean IHC scores were markedly higher in tumor tissues than in paracancerous tissues. Pearson’s analysis demonstrated that the IHC scores of CDK14 expression were positively correlated with TTF-1, CK5/6, and Ki67 scores. Kaplan–Meier analysis illustrated that 5-year overall survival was markedly longer in patients with weak CDK14 staining. TNM stage, pleural invasion, lymph node metastasis, CDK14 expression, and Ki67 expression were risk factors for 5-year overall survival in patients with NSCLC. Conclusion CDK14 overexpression portended poor outcomes in patients with NSCLC, and CDK14 expression was correlated with TTF-1, CK5/5, and Ki67 expression.
Collapse
Affiliation(s)
- Yong Yang
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Guangda Yuan
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Hongya Xie
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Tengteng Wei
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Donglin Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Yimeng Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Shiying Zheng
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Stingless Bee Propolis: New Insights for Anticancer Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2169017. [PMID: 34603594 PMCID: PMC8483912 DOI: 10.1155/2021/2169017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.
Collapse
|
15
|
Bhurta D, Bharate SB. Analyzing the scaffold diversity of cyclin-dependent kinase inhibitors and revisiting the clinical and preclinical pipeline. Med Res Rev 2021; 42:654-709. [PMID: 34605036 DOI: 10.1002/med.21856] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/04/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Kinases have gained an important place in the list of vital therapeutic targets because of their overwhelming clinical success in the last two decades. Among various clinically validated kinases, the cyclin-dependent kinases (CDK) are one of the extensively studied drug targets for clinical development. Food and Drug Administration has approved three CDK inhibitors for therapeutic use, and at least 27 inhibitors are under active clinical development. In the last decade, research and development in this area took a rapid pace, and thus the analysis of scaffold diversity is essential for future drug design. Available reviews lack the systematic study and discussion on the scaffold diversity of CDK inhibitors. Herein we have reviewed and critically analyzed the chemical diversity present in the preclinical and clinical pipeline of CDK inhibitors. Our analysis has shown that although several scaffolds represent CDK inhibitors, only the amino-pyrimidine is a well-represented scaffold. The three-nitrogen framework of amino-pyrimidine is a fundamental hinge-binding unit. Further, we have discussed the selectivity aspects among CDKs, the clinical trial dose-limiting toxicities, and highlighted the most advanced clinical candidates. We also discuss the changing paradigm towards selective inhibitors and an overview of ATP-binding pockets of all druggable CDKs. We carefully analyzed the clinical pipeline to unravel the candidates that are currently under active clinical development. In addition to the plenty of dual CDK4/6 inhibitors, there are many selective CDK7, CDK9, and CDK8/19 inhibitors in the clinical pipeline.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Zhang J, Xu D, Zhou Y, Zhu Z, Yang X. Mechanisms and Implications of CDK4/6 Inhibitors for the Treatment of NSCLC. Front Oncol 2021; 11:676041. [PMID: 34395246 PMCID: PMC8361448 DOI: 10.3389/fonc.2021.676041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key regulators of cell cycle progression in malignant tumor cells and play an important role through complex molecular interactions. Dysregulation of CDK dependent pathways is often found in non-small cell lung cancer, which indicates its vulnerability and can be used in clinical benefit. CDK4/6 inhibitors can prevent tumor cells from entering the G approved 1 and S phases, which have been studied in a series of explorations and brought great clinical effect to patients and encouragement to both physicians and researchers, thereby showing potential as a new therapeutic agent. A series of preclinical and clinical studies have been carried out on CDK4/6 inhibitors in NSCLC, and have been achieved some results, which may become a new potential treatment in the future. This review focuses on the research progress on CDK4/6 inhibitors in NSCLC, particularly the mechanisms of action, drugs, clinical research progress, and future application.
Collapse
Affiliation(s)
- Jinmeng Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dayu Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Heng WS, Kruyt FAE, Cheah SC. Understanding Lung Carcinogenesis from a Morphostatic Perspective: Prevention and Therapeutic Potential of Phytochemicals for Targeting Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22115697. [PMID: 34071790 PMCID: PMC8198077 DOI: 10.3390/ijms22115697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is still one of the deadliest cancers, with over two million incidences annually. Prevention is regarded as the most efficient way to reduce both the incidence and death figures. Nevertheless, treatment should still be improved, particularly in addressing therapeutic resistance due to cancer stem cells—the assumed drivers of tumor initiation and progression. Phytochemicals in plant-based diets are thought to contribute substantially to lung cancer prevention and may be efficacious for targeting lung cancer stem cells. In this review, we collect recent literature on lung homeostasis, carcinogenesis, and phytochemicals studied in lung cancers. We provide a comprehensive overview of how normal lung tissue operates and relate it with lung carcinogenesis to redefine better targets for lung cancer stem cells. Nine well-studied phytochemical compounds, namely curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, luteolin, sulforaphane, berberine, genistein, and capsaicin, are discussed in terms of their chemopreventive and anticancer mechanisms in lung cancer and potential use in the clinic. How the use of phytochemicals can be improved by structural manipulations, targeted delivery, concentration adjustments, and combinatorial treatments is also highlighted. We propose that lung carcinomas should be treated differently based on their respective cellular origins. Targeting quiescence-inducing, inflammation-dampening, or reactive oxygen species-balancing pathways appears particularly interesting.
Collapse
Affiliation(s)
- Win Sen Heng
- Faculty of Medical Sciences, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (W.S.H.); (F.A.E.K.)
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Frank A. E. Kruyt
- Faculty of Medical Sciences, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (W.S.H.); (F.A.E.K.)
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-91018880
| |
Collapse
|
18
|
Parvathareddy SK, Siraj AK, Masoodi T, Annaiyappanaidu P, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. Cyclin-dependent kinase 9 (CDK9) predicts recurrence in Middle Eastern epithelial ovarian cancer. J Ovarian Res 2021; 14:69. [PMID: 34011401 PMCID: PMC8136118 DOI: 10.1186/s13048-021-00827-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Cyclin-dependent kinase 9 (CDK9) has been shown to play an important role in tumorigenesis of several malignancies. However, the expression of CDK9 in ovarian cancer from Middle Eastern ethnicity remains unknown. Methods A tissue microarray of 441 epithelial ovarian cancer (EOC) samples was used to study the expression of CDK9 immunohistochemically and their clinico-pathological associations were determined. Cox proportional hazards regression model was used for univariate and multivariate analysis of recurrence-free survival. Results CDK9 over-expression was noted in 56.2 % (248/441) of EOCs and was associated with adverse clinico-pathological parameters such as distant metastasis (p < 0.0001), stage IV tumors (p < 0.0001), tumor recurrence (p = 0.0105) and high Ki-67 index (p < 0.0001). Importantly, CDK9 over-expression was an independent predictor of poor recurrence-free survival (Hazard ratio = 1.51; 95 % confidence interval = 1.15–1.98; p = 0.0030). We also found that CDK9 outperforms Ki-67 as a predictor of tumor recurrence in EOC. Conclusions Our results show that CDK9 expression correlates with markers of advanced disease in Middle Eastern EOC and is also a prognostic marker. CDK9 overexpression also identifies a subset of patients with highest likelihood of recurrence across the patient cohort. These patients may benefit from additional alternative therapies targeting CKD9. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00827-8.
Collapse
Affiliation(s)
- Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, MBC#98 - 16, 11211, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, MBC#98 - 16, 11211, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, MBC#98 - 16, 11211, Riyadh, Saudi Arabia
| | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, MBC#98 - 16, 11211, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics & Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, MBC#98 - 16, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Li Y, Du R, Nie Y, Wang T, Ma Y, Fan Y. Design, synthesis and biological assessment of novel CDK4 inhibitor with potent anticancer activity. Bioorg Chem 2021; 109:104717. [PMID: 33647744 DOI: 10.1016/j.bioorg.2021.104717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Efforts toward finding potent CDK4 inhibitor for cancer therapy, a series of fluorine substituted pyrrolo[2,3-d]pyrimidine derivatives were designed, synthesized, and evaluated. Among them, the optimal lead compound 18i was discovered with potent activity against CDK4 at the nanomolar level (IC50 = 2.5 nM) and exquisite selectivity which demonstrated only modest activity against 3 out of the 394 protein kinases. 18i exhibited a much greater in vitro antiproliferative activity against several human cancer cell lines than that of the approved drug ribociclib. Further mechanism studies revealed that 18i effectively stimulated cancer cell cycle arrest in G1 phase and induced tumor cell apoptosis. In the comparison of in vivo therapeutic effects in xenograft mouse models of breast cancer, oral administration of 18i showed a significantly better degree of inhibitory effect to ribociclib without obvious toxicity. All of the results indicated that 18i could be a promising CDK4 inhibitor for treating malignancies.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China; St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renle Du
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China
| | - Yongwei Nie
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China
| | - Yakun Ma
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China.
| |
Collapse
|