1
|
Turco L, Della Monica R, Giordano P, Cuomo M, Biazzo M, Mateu B, Di Liello R, Daniele B, Normanno N, De Luca A, Rachiglio AM, Chiaramonte C, Giugliano FM, Chiariotti L, Catapano G, Coretti L, Lembo F. Case report: Tracing in parallel the salivary and gut microbiota profiles to assist Larotrectinib anticancer treatment for NTRK fusion-positive glioblastoma. Front Oncol 2024; 14:1458990. [PMID: 39634265 PMCID: PMC11614819 DOI: 10.3389/fonc.2024.1458990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Oncotherapy can shape intestinal microbiota, which, in turn, may influence therapy effectiveness. Furthermore, microbiome signatures during treatments can be leveraged for the development of personalised therapeutic protocols in cancer treatment based on the identification of microbiota profiles as prognostic tools. Here, for the first time, the trajectory of gut and salivary microbiota in a patient treated with Larotrectinib, a targeted therapy approved for diagnosed glioblastoma multiforme neurotrophic tyrosine receptor kinase (NTRK) gene fusion-positive, has been accurately investigated. We based our analyses on histological diagnosis, genomic and epigenomic profiling of tumour DNA, and faecal and salivary full-length 16S rRNA gene sequencing. The study clearly evidenced a remodelling of the bacterial communities following 1 month of the NTRK-inhibitor treatment, at both gut and oral levels. We reported a boosting of specific bacteria also described in response to other chemotherapeutic approaches, such as Enterococcus faecium, E. hirae, Akkermansia muciniphila, Barnesiella intestinihominis, and Bacteroides fragilis. Moreover, several bacterial species were similarly modulated upon Larotrectinib in faecal and saliva samples. Our results suggest a parallel dynamism of microbiota profiles in both body matrices possibly useful to identify microbial biomarkers as contributors to precision medicine in cancer therapies.
Collapse
Affiliation(s)
- Luigia Turco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosa Della Monica
- CEINGE-Advanced Biotechnologies “Franco Salvatore”, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | | - Mariella Cuomo
- CEINGE-Advanced Biotechnologies “Franco Salvatore”, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | | - Baptiste Mateu
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II”, Naples, Italy
| | | | - Bruno Daniele
- UOC Oncologia Ospedale del Mare, ASL Napoli 1 Centro, Naples, Italy
| | - Nicola Normanno
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS Fondazione G. Pascale, Naples, Italy
| | | | | | - Lorenzo Chiariotti
- CEINGE-Advanced Biotechnologies “Franco Salvatore”, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II”, Naples, Italy
| | - Giuseppe Catapano
- UOC Neurochirurgia Ospedale del Mare, ASL Napoli 1 Centro, Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II”, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
2
|
Gouda MA, Thein KZ, Hong DS. Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions. Cancers (Basel) 2024; 16:3395. [PMID: 39410015 PMCID: PMC11475940 DOI: 10.3390/cancers16193395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
NTRK fusions are oncogenic drivers for multiple tumor types. Therefore, the development of selective tropomyosin receptor kinase (TRK) inhibitors, including larotrectinib and entrectinib, has been transformative in the context of clinical management, given the high rates of responses to these drugs, including intracranial responses in patients with brain metastases. Given their promising activity in pan-cancer cohorts, larotrectinib and entrectinib received U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval for tissue-agnostic indications in patients with advanced solid tumors harboring NTRK fusions. The safety profiles for both drugs are quite manageable, although neurotoxicity driven by the on-target inhibition of normal NTRK can be a concern. Also, on- and off-target resistance mechanisms can arise during therapy with TRK inhibitors, but they can be addressed with the use of combination therapy and next-generation TRK inhibitors. More recently, the FDA approved the use of repotrectinib, a second-generation TRK inhibitor, in patients with NTRK fusions, based on data suggesting clinical efficacy and safety, which could offer another tool for the treatment of NTRK-altered cancers. In this review, we summarize the current evidence related to the use of TRK inhibitors in the tissue-agnostic setting. We also elaborate on the safety profiles and resistance mechanisms from a practical perspective.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kyaw Z. Thein
- Comprehensive Cancer Centers of Nevada—Central Valley, Las Vegas, NV 89169, USA;
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
4
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
5
|
Klink AJ, Kavati A, Gassama AT, Kozlek T, Gajra A, Antoine R. Timing of NTRK Gene Fusion Testing and Treatment Modifications Following TRK Fusion Status Among US Oncologists Treating TRK Fusion Cancer. Target Oncol 2022; 17:321-328. [PMID: 35716252 PMCID: PMC9217884 DOI: 10.1007/s11523-022-00887-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers with an estimated prevalence of less than 1% across all solid tumors. Tropomyosin receptor kinase inhibitors (TRKis) block the constitutively activated tyrosine receptor kinase (TRK) fusion protein produced in NTRK gene fusion positive (NTRK+) tumors from downstream signaling. Tropomyosin receptor kinase inhibitors are now first-line (1L) or subsequent treatment options for TRK fusion cancers. OBJECTIVE This study assessed timing of NTRK gene fusion testing and treatment modifications among patients with TRK fusion cancers. PATIENTS AND METHODS This was a one-time physician questionnaire with a retrospective, multisite patient chart abstraction of oncology practices in the USA. From June to September 2020, medical oncologists from the Oncology Provider Extended Network (OPEN) who treated patients with NTRK+ advanced/metastatic solid tumors abstracted information into electronic case report forms (eCRFs) for adult patients with advanced/metastatic solid tumors and a NTRK+ tumor test result with a known fusion partner. Use of NTRK testing in routine clinical practice among patients with advanced/metastatic solid tumors was assessed. Data included demographic, clinical, and NTRK gene fusion testing characteristics. Responses were summarized using descriptive statistics. RESULTS Twenty-eight community-based medical oncologists who had managed or treated 148 patients with advanced/metastatic TRK fusion cancer between 01/01/2016 and 12/31/2019 completed the survey. Lung (27%), thyroid (18%), salivary gland (14%), and colorectal (12%) were the most commonly reported tumor types. A majority (68%) tested NTRK status prior to 1L initiation; testing after disease progression on 1L (36%), 2L (25%), and 3L (21%) was also noted. Most oncologists (96%) reported no difficulty interpreting NTRK reports. Nearly all (96%) indicated using next-generation sequencing (NGS) for determining NTRK status. The majority (57%) indicated that age, tumor type, and performance status did not impact NTRK testing decisions. Less than half (46%) include TRKi therapy following NTRK+ determination. NTRK testing guidelines were commonly reviewed by physicians (89%). CONCLUSION AND RELEVANCE Among patients with advanced/metastatic TRK fusion cancer, medical oncologists reported testing for NTRK fusions at diagnosis or prior to 1L. Future research should elucidate why fewer than half of oncologists surveyed (46%) would not use TRKis after NTRK+ status confirmation, assess clinical practices among NTRK+ patients, and characterize treatment patterns and clinical outcomes in real-world settings.
Collapse
Affiliation(s)
| | | | | | - Tom Kozlek
- Bayer Pharmaceuticals LLC, Whippany, NJ, USA
| | | | | |
Collapse
|
6
|
Nagy Z, Jeselsohn R. ESR1 fusions and therapeutic resistance in metastatic breast cancer. Front Oncol 2022; 12:1037531. [PMID: 36686845 PMCID: PMC9848494 DOI: 10.3389/fonc.2022.1037531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most frequent female malignant tumor, and the leading cause of cancer death in women worldwide. The most common subtype of breast cancer is hormone receptor positive that expresses the estrogen receptor (ER). Targeting ER with endocrine therapy (ET) is the current standard of care for ER positive (ER+) breast cancer, reducing mortality by up to 40% in early- stage disease. However, resistance to ET represents a major clinical challenge for ER+ breast cancer patients leading to disease recurrence or progression of metastatic disease. Salient drivers of ET resistance are missense mutations in the ER gene (ESR1) leading to constitutive transcriptional activity and reduced ET sensitivity. These mutations are particularly prominent and deleterious in metastatic breast cancer (MBC). In addition to activating ESR1 point mutations, emerging evidence imposes that chromosomal translocation involving the ESR1 gene can also drive ET resistance through the formation of chimeric transcription factors with constitutive transcriptional activity. Although these ESR1 gene fusions are relatively rare, they are enriched in ET resistant metastatic disease. This review discusses the characteristics of ER fusion proteins and their association with clinical outcomes in more aggressive and metastatic breast cancer. The structure and classification of ER fusion proteins based on function and clinical significance are also addressed. Finally, this review summarizes the metastatic phenotypes exhibited by the ER fusion proteins and their role in intrinsic ET resistance.
Collapse
Affiliation(s)
- Zsuzsanna Nagy
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rinath Jeselsohn, ; Zsuzsanna Nagy,
| | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rinath Jeselsohn, ; Zsuzsanna Nagy,
| |
Collapse
|
7
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Balan J, Jenkinson G, Nair A, Saha N, Koganti T, Voss J, Zysk C, Barr Fritcher EG, Ross CA, Giannini C, Raghunathan A, Kipp BR, Jenkins R, Ida C, Halling KC, Blackburn PR, Dasari S, Oliver GR, Klee EW. SeekFusion - A Clinically Validated Fusion Transcript Detection Pipeline for PCR-Based Next-Generation Sequencing of RNA. Front Genet 2021; 12:739054. [PMID: 34745213 PMCID: PMC8569241 DOI: 10.3389/fgene.2021.739054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Detecting gene fusions involving driver oncogenes is pivotal in clinical diagnosis and treatment of cancer patients. Recent developments in next-generation sequencing (NGS) technologies have enabled improved assays for bioinformatics-based gene fusions detection. In clinical applications, where a small number of fusions are clinically actionable, targeted polymerase chain reaction (PCR)-based NGS chemistries, such as the QIAseq RNAscan assay, aim to improve accuracy compared to standard RNA sequencing. Existing informatics methods for gene fusion detection in NGS-based RNA sequencing assays traditionally use a transcriptome-based spliced alignment approach or a de-novo assembly approach. Transcriptome-based spliced alignment methods face challenges with short read mapping yielding low quality alignments. De-novo assembly-based methods yield longer contigs from short reads that can be more sensitive for genomic rearrangements, but face performance and scalability challenges. Consequently, there exists a need for a method to efficiently and accurately detect fusions in targeted PCR-based NGS chemistries. We describe SeekFusion, a highly accurate and computationally efficient pipeline enabling identification of gene fusions from PCR-based NGS chemistries. Utilizing biological samples processed with the QIAseq RNAscan assay and in-silico simulated data we demonstrate that SeekFusion gene fusion detection accuracy outperforms popular existing methods such as STAR-Fusion, TOPHAT-Fusion and JAFFA-hybrid. We also present results from 4,484 patient samples tested for neurological tumors and sarcoma, encompassing details on some novel fusions identified.
Collapse
Affiliation(s)
| | - Garrett Jenkinson
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Asha Nair
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Neiladri Saha
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Tejaswi Koganti
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Jesse Voss
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| | - Christopher Zysk
- Applied Genomics Division, Perkin Elmer, Waltham, MA, United States
| | | | - Christian A Ross
- Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Caterina Giannini
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, United States
| | - Aditya Raghunathan
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, United States
| | - Benjamin R Kipp
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, United States
| | - Robert Jenkins
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| | - Cris Ida
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| | - Kevin C Halling
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| | - Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Surendra Dasari
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Gavin R Oliver
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Eric W Klee
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|