1
|
Zhang L, Jia J, Yan J. Challenges and Strategies for Synthesizing High Performance Micro and Nanoscale High Entropy Oxide Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309586. [PMID: 38348913 DOI: 10.1002/smll.202309586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/22/2024] [Indexed: 07/13/2024]
Abstract
High-entropy oxide micro/nano materials (HEO MNMs) have shown broad application prospects and have become hot materials in recent years. This review comprehensively provides an overview of the latest developments and covers key aspects of HEO MNMs, by discussing design principles, computer-aided structural design, synthesis challenges and strategies, as well as application areas. The analysis of the synthesis process includes the role of high-throughput process in large-scale synthesis of HEOs MNMs, along with the effects of temperature elevation and undercooling on the formation of HEO MNMs. Additionally, the article summarizes the application of high-precision and in situ characterization devices in the field of HEO MNMs, offering robust support for related research. Finally, a brief introduction to the main applications of HEO MNMs is provided, emphasizing their key performances. This review offers valuable guidance for future research on HEO MNMs, outlining critical issues and challenges in the current field.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiru Jia
- School of Textile Garment and Design, Changshu Institute of Technology, Suzhou, Jiangsu Province, 215500, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Kendall O, Fasihi P, Abrahams R, Paradowska A, Reid M, Lai Q, Qiu C, Mutton P, Soodi M, Yan W. Application of a New Alloy and Post Processing Procedures for Laser Cladding Repairs on Hypereutectoid Rail Components. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15155447. [PMID: 35955387 PMCID: PMC9369482 DOI: 10.3390/ma15155447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/02/2023]
Abstract
The development of a laser cladding repair strategy is critical for the continued growth of heavy-haul railway networks. Premium hypereutectoid rails have undergone laser cladding using a new martensitic stainless-steel alloy, 415SS, developed for high carbon rails after standard cladding metals were found to be incompatible. Non-destructive neutron diffraction techniques were used to measure the residual stress in different layers generated across a dissimilar metal joint during laser cladding. The internal stress distribution across the cladding, heat-affected zone (HAZ), and substrate was measured in the untempered rail, after 350 °C and 540 °C heat treatment procedures and two surface grinding operations. The martensitic 415SS depositions produce compressive stress in the cladding, regardless of tempering procedures, which may inhibit fatigue crack propagation whilst grinding operations locally relive surface stress. Balancing tensile stresses were recorded below the fusion boundary in the HAZ due to thermal gradients altering the microstructure. The combination of 540 °C tempering and 0.5 mm surface layer removal produced a desirable combination of compression in the cladding deposition with significantly reduced tensile stresses in the HAZ. A comparison with the current literature shows that this alloy achieves a unique combination of desirable hardness, low tensile stress, and compression in the cladding layer. Data obtained during strain scanning has been used to determine the location of microstructural changes at the fusion boundary and HAZ through correlation of the stress, strain, full width at half maximum (FWHM), and intensity profiles. Therefore, neutron diffraction can be used for both the accurate measurement of internal residual stress and to obtain microstructural information of a metallurgical join non-destructively.
Collapse
Affiliation(s)
- Olivia Kendall
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Panahsadat Fasihi
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Ralph Abrahams
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Anna Paradowska
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Reid
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
| | - Quan Lai
- Institute of Railway Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Cong Qiu
- Institute of Railway Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Peter Mutton
- Institute of Railway Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Mehdi Soodi
- LaserBond Ltd., Melbourne, VIC 3018, Australia
| | - Wenyi Yan
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
3
|
Kaczmarek K, Leniart A, Lapinska B, Skrzypek S, Lukomska-Szymanska M. Selected Spectroscopic Techniques for Surface Analysis of Dental Materials: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2624. [PMID: 34067921 PMCID: PMC8156406 DOI: 10.3390/ma14102624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
The presented work focuses on the application of spectroscopic methods, such as Infrared Spectroscopy (IR), Fourier Transform Infrared Spectroscopy (FT-IR), Raman spectroscopy, Ultraviolet and Visible Spectroscopy (UV-Vis), X-ray spectroscopy, and Mass Spectrometry (MS), which are widely employed in the investigation of the surface properties of dental materials. Examples of the research of materials used as tooth fillings, surface preparation in dental prosthetics, cavity preparation methods and fractographic studies of dental implants are also presented. The cited studies show that the above techniques can be valuable tools as they are expanding the research capabilities of materials used in dentistry.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | - Andrzej Leniart
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Slawomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | | |
Collapse
|
4
|
Through-Thickness Microstructure Characterization in a Centrifugally Cast Austenitic Stainless Steel Nuclear Reactor Primary Loop Pipe Using Time-of-Flight Neutron Diffraction. QUANTUM BEAM SCIENCE 2021. [DOI: 10.3390/qubs5020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The US code of Federal Regulations mandates regular inspection of centrifugally cast austenitic stainless steel pipe, commonly used in primary cooling loops in light-water nuclear power plants. These pipes typically have a wall thickness of ~8 cm. Unfortunately, inspection using conventional ultrasonic techniques is not reliable as the microstructure strongly attenuates ultrasonic waves. Work is ongoing to simulate the behavior of acoustic waves in this microstructure and ultimately develop an acoustic inspection method for reactor inspections. In order to account for elastic anisotropy in the material, the texture in the steel was measured as a function of radial distance though the pipe wall. Experiments were conducted on two 10 × 12.7 × 80 mm radial sections of a cast pipe using neutron diffraction scans of 2 mm slices using the HIPPO time-of-flight neutron diffractometer at the Los Alamos Neutron Science Center (LANSCE, Los Alamos, NM, USA). Strong textures dominated by a small number of austenite grains with their (100) direction aligned in the radial direction of the pipe were observed. ODF analysis indicated that up to 70% of the probed volume was occupied by just three single-grain orientations, consistent with grain sizes of almost 1 cm. Texture and phase fraction of both ferrite and austenite phases were measured along the length of the samples. These results will inform the development of a more robust diagnostic tool for regular inspection of this material.
Collapse
|
5
|
Long J, Nand A, Ray S. Application of Spectroscopy in Additive Manufacturing. MATERIALS 2021; 14:ma14010203. [PMID: 33406712 PMCID: PMC7795079 DOI: 10.3390/ma14010203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Additive manufacturing (AM) is a rapidly expanding material production technique that brings new opportunities in various fields as it enables fast and low-cost prototyping as well as easy customisation. However, it is still hindered by raw material selection, processing defects and final product assessment/adjustment in pre-, in- and post-processing stages. Spectroscopic techniques offer suitable inspection, diagnosis and product trouble-shooting at each stage of AM processing. This review outlines the limitations in AM processes and the prospective role of spectroscopy in addressing these challenges. An overview on the principles and applications of AM techniques is presented, followed by the principles of spectroscopic techniques involved in AM and their applications in assessing additively manufactured parts.
Collapse
Affiliation(s)
- Jingjunjiao Long
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (A.N.); (S.R.)
| | - Ashveen Nand
- School of Environmental and Animal Sciences and School of Healthcare and Social Practice, Unitec Institute of Technology, Auckland 1025, New Zealand
- Correspondence: (J.L.); (A.N.); (S.R.)
| | - Sudip Ray
- MBIE Product Accelerator Programme, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- Correspondence: (J.L.); (A.N.); (S.R.)
| |
Collapse
|