1
|
Bendaoud U, Bhowmik PK, Chen SL, Han H, Cox SL, Liebsch J, Ros MB, Selvi Velayutham T, Aripin NFK, Martinez-Felipe A. Modulating the Conductivity of Light-Responsive Ionic Liquid Crystals. Molecules 2024; 29:4459. [PMID: 39339454 PMCID: PMC11434579 DOI: 10.3390/molecules29184459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In this work, we describe the phase behaviour and the dielectric and conductivity response of new light-responsive ionic liquid crystals, ILCs, which can be applied as controllable electrolytes. The materials include two different dicationic viologens, the asymmetric 6BP18 and the symmetric EV2ON(Tf)2, containing bistriflimide as the counterions, mixed with 5% and 50% molar, respectively, of one new photoresponsive mesogen called CNAzO14. These mixtures exhibit liquid crystal behaviour, light responsiveness through the E-Z photoisomerisation of the azobenzene groups in CNAzO14, and strong dielectric responses. The 5%-CNAzO14/Ev2ON(Tf)2 mixture displays direct current conductivities in the 10-7 S·cm-1 range, which can be increased by a two-fold factor upon the irradiation of UV light at 365 nm. Our findings set the grounds for designing new smart ionic soft materials with nanostructures that can be tuned and used for energy conversion and storage applications.
Collapse
Affiliation(s)
- Umama Bendaoud
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
| | - Pradip K. Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Si L. Chen
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Seonghyeok L. Cox
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Jasmin Liebsch
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
- Department of Chemistry, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - M. Blanca Ros
- Instituto de Nanociencia y Materiales de Aragón, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-CSIC, Campus San Francisco, E-50009 Zaragoza, Spain;
| | - Thamil Selvi Velayutham
- Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nurul Fadhilah Kamalul Aripin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - Alfonso Martinez-Felipe
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
| |
Collapse
|
2
|
Yao Y, Watanabe H, Hara M, Nagano S, Nagao Y. Lyotropic Liquid Crystalline Property and Organized Structure in High Proton-Conductive Sulfonated Semialicyclic Oligoimide Thin Films. ACS OMEGA 2023; 8:7470-7478. [PMID: 36872982 PMCID: PMC9979332 DOI: 10.1021/acsomega.2c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fully aromatic sulfonated polyimides with a rigid backbone can form lamellar structures under humidified conditions, thereby facilitating the transmission of protons in ionomers. Herein, we synthesized a new sulfonated semialicyclic oligoimide composed of 1,2,3,4-cyclopentanetetracarboxylic dianhydride (CPDA) and 3,3'-bis-(sulfopropoxy)-4,4'-diaminobiphenyl to investigate the influence of molecular organized structure and proton conductivity with lower molecular weight. The weight-average molecular weight (M w) determined by gel permeation chromatography was 9300. Humidity-controlled grazing incidence X-ray scattering revealed that one scattering was observed in the out-of-plane direction and showed that the scattering position shifted to a lower angle as the humidity increased. A loosely packed lamellar structure was formed by lyotropic liquid crystalline properties. Although the ch-pack aggregation of the present oligomer was reduced by substitution to the semialicyclic CPDA from the aromatic backbone, the formation of a distinct organized structure in the oligomeric form was observed because of the linear conformational backbone. This report is the first-time observation of the lamellar structure in such a low-molecular-weight oligoimide thin film. The thin film exhibited a high conductivity of 0.2 (±0.01) S cm-1 under 298 K and 95% relative humidity, which is the highest value compared to the other reported sulfonated polyimide thin films with comparable molecular weight.
Collapse
Affiliation(s)
- Yuze Yao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hayato Watanabe
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shusaku Nagano
- Department
of Chemistry, College of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
3
|
Tabata K, Nohara T, Nakazaki H, Makino T, Saito T, Arita T, Masuhara A. Proton conductivity dependence on the surface polymer thickness of core-shell type nanoparticles in a proton exchange membrane. NANOSCALE ADVANCES 2022; 4:4714-4723. [PMID: 36381507 PMCID: PMC9642339 DOI: 10.1039/d2na00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The proton exchange membrane (PEM) is the main component that determines the performance of polymer electrolyte fuel cells. The construction of proton-conduction channels capable of fast proton conduction is an important topic in PEM research. In this study, we have developed poly(vinylphosphonic acid)-block-polystyrene (PVPA-b-PS)-coated core-shell type silica nanoparticles prepared by in situ polymerization and a core-shell type nanoparticle-filled PEM. In this system, two-dimensional (2D) proton-conduction channels have been constructed between PVPA and the surface of silica nanoparticles, and three-dimensional proton-conduction channels were constructed by connecting these 2D channels by filling with the core-shell type nanoparticles. The proton conductivities and activation energies of pelletized PVPA-coated core-shell type nanoparticles increased depending on the coated PVPA thickness. Additionally, pelletized PVPA-b-PS-coated silica nanoparticles showed a good proton conductivity of 1.3 × 10-2 S cm-1 at 80 °C and 95% RH. Also, the membrane state achieved 1.8 × 10-4 S cm-1 in a similar temperature and humidity environment. Although these proton conductivities were lower than those of PVPA, they have advantages such as low activation energy for proton conduction, suppression of swelling due to water absorption, and the ability to handle samples in powder form. Moreover, by using PS simultaneously, we succeeded in improving the stability of proton conductivity against changes in the temperature and humidity environment. Therefore, we have demonstrated a highly durable, tough but still enough high proton conductive material by polymer coating onto the surface of nanoparticles and also succeeded in constructing proton-conduction channels through the easy integration of core-shell type nanoparticles.
Collapse
Affiliation(s)
- Keisuke Tabata
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Tomohiro Nohara
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Haruki Nakazaki
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Tsutomu Makino
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Takaaki Saito
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Toshihiko Arita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM), Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
4
|
Luo J, Yang Q, Tan S, Wang C, Wu Y. Anisotropic polymer membranes retaining nanolayered hydrogen sulfate anions for enhanced anhydrous proton conduction. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kinetic Modeling of Grain Boundary Diffusion: Typical, Bi-Modal, and Semi-Lamellar Polycrystalline Coating Morphologies. COATINGS 2022. [DOI: 10.3390/coatings12070992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Polycrystalline coatings and materials are widely used in engineering applications. Therefore, it is important to know their kinetics and mass transport mechanisms. The effect of grain boundaries (GBs) on diffusion in thin films with different morphologies lacks understanding. Numerical studies are necessary to study GB kinetics but are limited to simplified cases. The present work addresses the lack of diffusion studies in more complex morphologies. Diffusion in two-dimensional polycrystalline coatings of typical, bi-modal, and semi-lamellar morphologies was modeled and the influence of the microstructure on the diffusion regimes and the overall rate was identified. Different morphologies with similar diffusion coefficients provided different regimes. The regime depends not only on the total diffusivity and grain/GB diffusivities, but also on the morphological features of the surface. While the fast diffusion pathways of GBs accelerated diffusion, the level of acceleration depends on the morphology since fast pathways and flux areas are limited to GBs. GB distribution is important to the mass transfer process, as GBs accelerate diffusion locally. The overall diffusion rate is generally dependent on the diffusion coefficients ratio. Nevertheless, the level of this dependence relies on the morphology.
Collapse
|
6
|
Shen X, Song J, Sevencan C, Leong DT, Ariga K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:199-224. [PMID: 35370475 PMCID: PMC8973389 DOI: 10.1080/14686996.2022.2054666] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
7
|
Mitigating Early Phase Separation of Aliphatic Random Ionomers by the Hydrophobic H-Bond Acceptor Addition. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports a new phenomenon whereby the ionic content of a random ionomer was increased by the introduction of a hydrophobic modifier. In the current study, the ionomer synthesized from the solution polymerization of the three vinyl monomers, which are polar hydrophobic monomers acrylonitrile (AN), glycidyl methacrylate (GMA), and ionic monomer potassium 3-sulfopropyl methacrylate (SPM), encountered an early phase separation problem when the ionic content exceeded a certain threshold value. However, the addition of a strongly hydrophobic monomer, 2,2,3,3-tetrafluoropropyl methacrylate (TFPM), during the copolymerization is able to restrain this phase separation trend, consequently allowing 50% more of SPM units to be incorporated and uniformly distributed in the ionomer and achieving a random copolymer chain. The ionic clustering of the SPM units, which is the cause for the phase separation, was reduced as a result. The resulting random ionomer was demonstrated to be a superior proton conducting material over its ternary originator. This is due to the fact that TFPM possesses acidic protons, which brings about an association of TFPM with SPM and GMA via hydrogen bonding. This study could impact the synthesis of random ionomers by free radical polymerization since monitoring ionic content and improving ionic unit distribution in ionomers are issues encountered in several industries (e.g., the healthcare industry).
Collapse
|
8
|
Nohara T, Arita T, Tabata K, Saito T, Shimada R, Nakazaki H, Suzuki Y, Sato R, Masuhara A. Novel Filler-Filled-Type Polymer Electrolyte Membrane for PEFC Employing Poly(vinylphosphonic acid)- b-polystyrene-Coated Cellulose Nanocrystals as a Filler. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8353-8360. [PMID: 35067039 DOI: 10.1021/acsami.1c18695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-acidity polymer electrolyte membranes are essential to polymer electrolyte fuel cells (PEFCs) and water electrolysis systems, both of which are expected to be next-generation energy and hydrogen sources. We developed a new type of high-performance polymer electrolyte membrane (PEM) in which the core particles are precisely electrolyte polymer coated and filled into binder resin. Cellulose nanocrystals (CNCs), which have attracted attention as light, rigid, and sustainable materials, were selected as the core material for the filler. The CNC surface was coated with a new block copolymer containing a proton conductive polymer of poly(vinylphosphonic acid) (PVPA) and a hydrophobic polymer of polystyrene (PS) using RAFT polymerization with particles (PwP) we developed. The pelletized fillers and the filler-filled polycarbonate membranes achieved proton conductivities of over 10-2 S/cm with lower activation energies and much weaker acidity than the Nafion membrane.
Collapse
Affiliation(s)
- Tomohiro Nohara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Toshihiko Arita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Keisuke Tabata
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Takaaki Saito
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Ryuichiro Shimada
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Haruki Nakazaki
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Yukina Suzuki
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Ryota Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
9
|
Turetta N, Stoeckel MA, Furlan de Oliveira R, Devaux F, Greco A, Cendra C, Gullace S, Gicevičius M, Chattopadhyay B, Liu J, Schweicher G, Sirringhaus H, Salleo A, Bonn M, Backus EHG, Geerts YH, Samorì P. High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces. J Am Chem Soc 2022; 144:2546-2555. [DOI: 10.1021/jacs.1c10119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicholas Turetta
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Marc-Antoine Stoeckel
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Rafael Furlan de Oliveira
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Félix Devaux
- Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Alessandro Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sara Gullace
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Mindaugas Gicevičius
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Basab Chattopadhyay
- Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Jie Liu
- Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Henning Sirringhaus
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H. G. Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Yves H. Geerts
- Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium
- International Solvay Institutes of Physics and Chemistry, ULB, CP
231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Primachenko ON, Kulvelis YV, Marinenko EA, Gofman IV, Lebedev VT, Kononova SV, Kuklin AI, Ivankov OI, Soloviov DV, Chenneviere A. Orientational uniaxial stretching of proton conducting perfluorinated membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Oleg N. Primachenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences St. Petersburg Russia
| | - Yuri V. Kulvelis
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” Gatchina Russia
| | - Elena A. Marinenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences St. Petersburg Russia
| | - Iosif V. Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences St. Petersburg Russia
| | - Vasily T. Lebedev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” Gatchina Russia
| | - Svetlana V. Kononova
- Institute of Macromolecular Compounds, Russian Academy of Sciences St. Petersburg Russia
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna Russia
- Moscow Institute of Physics and Technology Dolgoprudny Russia
| | - Oleksandr I. Ivankov
- Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna Russia
| | - Dmytro V. Soloviov
- Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna Russia
| | - Alexis Chenneviere
- Laboratoire Léon Brillouin UMR12 CEA‐CNRS CEA Saclay Gif sur Yvette Cedex France
| |
Collapse
|
11
|
Wang FD, Su WH, Zhang CX, Wang QL. High Proton Conductivity of a Cadmium Metal-Organic Framework Constructed from Pyrazolecarboxylate and Its Hybrid Membrane. Inorg Chem 2021; 60:16337-16345. [PMID: 34644054 DOI: 10.1021/acs.inorgchem.1c02165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new type of metal-organic framework, [Cd2(pdc)(H2O)(DMA)2]n (pdc = 3,5-pyrazoledicarboxylic acid; DMA = dimethylamine), named Cd-MOF, was synthesized and characterized. There are regular rectangular pore channels containing a large number of dimethylamine cations in the crystal structure. AC impedance test results show the proton conductivity of Cd-MOF reaches 1.15 × 10-3 S cm-1 at 363 K and 98% RH. In order for its application in fuel cells, the Cd-MOF was introduced into a sulfonated polyphenylene oxide matrix to prepare a hybrid membrane, and the proton conductivity of the hybrid membrane has a high value of 2.64 × 10-1 S cm-1 at 343 K and 98% RH, which is higher than those of most MOF polymer hybrid membranes. The proton conductivity of the hybrid membrane of the SPPO polymer still maintains a certain degree of stability in a wide temperature range. To the best of our knowledge, it is the first proton exchange membrane that combines pyrazolecarboxylate cadmium MOFs and an SPPO polymer with high proton conductivity and good stability. This research may help to further develop the application of MOFs in the field of proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Feng-Dong Wang
- Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wen-Hui Su
- Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chen-Xi Zhang
- Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
12
|
Zhai L, Yao Y, Ma B, Hasan MM, Han Y, Mi L, Nagao Y, Li Z. Accumulation of Sulfonic Acid Groups Anchored in Covalent Organic Frameworks as an Intrinsic Proton-Conducting Electrolyte. Macromol Rapid Commun 2021; 43:e2100590. [PMID: 34612557 DOI: 10.1002/marc.202100590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Indexed: 12/25/2022]
Abstract
Covalent organic frameworks (COFs) are a novel class of crystalline porous polymers, which possess high porosity, excellent stability, and regular nanochannels. 2D COFs provide a 1D nanochannel to form the proton transport channels. The abovementioned features afford a powerful potential platform for designing materials as proton transportation carriers. Herein, the authors incorporate sulfonic acid groups on the pore walls as proton sources for enhancing proton transport conductivity in the 1D channel. Interestingly, the sulfonic acid COFs (S-COFs) electrolytes being binder free exhibit excellent proton conductivity of ≈1.5 × 10-2 S cm-1 at 25 ℃ and 95% relative humidity (RH), which rank the excellent performance in standard proton-conducting electrolytes. The S-COFs electrolytes keep the high proton conduction over the 24 h. The activation energy is estimated to be as low as 0.17 eV, which is much lower than most reported COFs. This research opens a new window to evolve great potential of structural design for COFs as the high proton-conducting electrolytes.
Collapse
Affiliation(s)
- Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Yuze Yao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Baiwei Ma
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Md Mahmudul Hasan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuxi Han
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Zhongping Li
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
13
|
Huo Y, Li Q, Rui Z, Ding R, Liu J, Li J, Liu J. A highly stable reinforced PEM assisted by resveratrol and polydopamine-treated PTFE. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Makiura R, Niwa A, Eimura H, Uchida J, Kato T. Air/Water Interfacial Monolayer Assembly of Peptide-Conjugated Liquid-Crystalline Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rie Makiura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Anna Niwa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Eimura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
New side-chain liquid crystalline terpolymers with anhydrous conductivity: Effect of azobenzene substitution on light response and charge transfer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Zhang Y, Li C, Liu Z, Yao Y, Hasan MM, Liu Q, Wan J, Li Z, Li H, Nagao Y. Intrinsic proton conduction in 2D sulfonated covalent organic frameworks through a post-synthetic strategy. CrystEngComm 2021. [DOI: 10.1039/d1ce00957e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A 2D sulfonated COF showed intrinsic proton conductivity up to 10−3 at 25 °C and 100% relative humidity and high conductivity up to 10−2 S cm−1 at 70 °C and 100% RH.
Collapse
Affiliation(s)
- Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Chunzhi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhaohan Liu
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan
| | - Yuze Yao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan
| | - Md. Mahmudul Hasan
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan
| | - Qianyu Liu
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zhongping Li
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan
| |
Collapse
|