1
|
Zhang L, Yuan J, Xu Q, Zhang F, Sun Q, Xie H. Noble-metal-free co-N-C catalyst derived from cellulose-based poly(ionic liquid)s for highly efficient oxygen reduction reaction. Int J Biol Macromol 2023:125110. [PMID: 37257539 DOI: 10.1016/j.ijbiomac.2023.125110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Noble-Metal-Free nitrogen-doped carbon-based materials are promising electrocatalysts for oxygen reduction reaction (ORR), yet it remains a great challenge to construct efficient porous non-noble metal nitrogen-doped carbon (M-N-C) catalysts with uniform distribution, due to the easy aggregation of metals. Herein, we reported the synthesis and assessment of a novel and efficient noble-metal-free catalyst for oxygen reduction reaction (ORR) from pyrolysis of a cobalt-containing cellulosic poly(ionic liquid) (Co-N-C). The prepared Co-N-C catalyst possesses high surface area, hierarchical porous structure, well-dispersed Co nanoparticles and large amounts of low-coordinated Co active sites. Especially, the Co-N-C-850 sample exhibits a high ORR activity (Eonset = 0.827 V, E1/2 = 0.74 V) that can rival 20 wt% commercial Pt/C (Eonset = 0.833 V, E1/2 = 0.71 V) in alkaline media. Moreover, the Co-N-C-850 sample also shows excellent anti-methanol poisoning activity and long-term stability toward ORR compared with commercial Pt/C. Our study provides a promising avenue both for the development of non-noble M-N-C catalysts for fuel cells and functional utilization of cellulose.
Collapse
Affiliation(s)
- Lin Zhang
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Jili Yuan
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Qinqin Xu
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| | - Fazhi Zhang
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Qi Sun
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Haibo Xie
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Yan L, Liu Y, Hou J. High-Efficiency Oxygen Reduction Reaction Revived from Walnut Shell. Molecules 2023; 28:2072. [PMID: 36903323 PMCID: PMC10003918 DOI: 10.3390/molecules28052072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The development of inexpensive and efficient electrocatalysts for oxygen reduction reactions (ORR) remains a challenge with respect to renewable energy technologies. In this research, a porous, nitrogen-doped ORR catalyst is prepared using the hydrothermal method and pyrolysis with walnut shell as a biomass precursor and urea as a nitrogen source. Unlike past research, in this study, urea is not directly doped; instead, a new type of doping is carried out after annealing at 550 °C. In addition, the sample's morphology and structure are analyzed and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A CHI 760E electrochemical workstation is used to test NSCL-900's performance in terms of oxygen reduction electrocatalysis (ORR). It has been found that the catalytic performance of NSCL-900 is significantly improved compared with that of NS-900 without urea doping. In a 0.1 mol/L KOH electrolyte, the half-wave potential can reach 0.86 V (vs. RHE) and the initial potential is 1.00 V (vs. RHE). The catalytic process is close to four-electron transfer and there are large quantities of pyridine nitrogen and pyrrole nitrogen.
Collapse
Affiliation(s)
- Lei Yan
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
| | - Yuchen Liu
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
| | - Junhua Hou
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
- Extreme Optical Collaborative Innovation Center, Shanxi University, No. 92, Wucheng Road, Xiaodian District, Taiyuan 030006, China
- Modern College of Humanities and Sciences, Shanxi Normal University, No. 501 Binhe West Road, Yaodu District, Linfen 041000, China
| |
Collapse
|
3
|
Chi M, Li N, Cui J, Karlin S, Rohr N, Sharma N, Thieringer FM. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:989729. [PMID: 36159699 PMCID: PMC9493000 DOI: 10.3389/fbioe.2022.989729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic acid (PLA) has been widely used as filaments for material extrusion additive manufacturing (AM) to develop patient-specific scaffolds in bone tissue engineering. Hydroxyapatite (HA), a major component of natural bone, has been extensively recognized as an osteoconductive biomolecule. Here, inspired by the mussel-adhesive phenomenon, in this study, polydopamine (PDA) coating was applied to the surface of 3D printed PLA scaffolds (PLA@PDA), acting as a versatile adhesive platform for immobilizing HA nanoparticles (nHA). Comprehensive analyses were performed to understand the physicochemical properties of the 3D-printed PLA scaffold functionalized with nHA and PDA for their potent clinical application as a bone regenerative substitute. Scanning electron microscopy (SEM) and element dispersive X-ray (EDX) confirmed a successful loading of nHA particles on the surface of PLA@PDA after 3 and 7 days of coating (PLA@PDA-HA3 and PLA@PDA-HA7), while the surface micromorphology and porosity remain unchanged after surface modification. The thermogravimetric analysis (TGA) showed that 7.7 % and 12.3% mass ratio of nHA were loaded on the PLA scaffold surface, respectively. The wettability test indicated that the hydrophilicity of nHA-coated scaffolds was greatly enhanced, while the mechanical properties remained uncompromised. The 3D laser scanning confocal microscope (3DLS) images revealed that the surface roughness was significantly increased, reaching Sa (arithmetic mean height) of 0.402 μm in PLA@PDA-HA7. Twenty-eight days of in-vitro degradation results showed that the introduction of nHA to the PLA surface enhances its degradation properties, as evidenced by the SEM images and weight loss test. Furthermore, a sustainable release of Ca2+ from PLA@PDA-HA3 and PLA@PDA-HA7 was recorded, during the degradation process. In contrast, the released hydroxyl group of nHA tends to neutralize the local acidic environments, which was more conducive to osteoblastic differentiation and extracellular mineralization. Taken together, this facile surface modification provides 3D printed PLA scaffolds with effective bone regenerative properties by depositing Ca2+ contents, improving surface hydrophilicity, and enhancing the in-vitro degradation rate.
Collapse
Affiliation(s)
- Minghan Chi
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Na Li
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, United States
| | - Sabrina Karlin
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Nadja Rohr
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|