1
|
Lu Y, Ma N, Cheng K, Liu G, Liang J, Xu C, Li D, Cao C, Gao X, Chen L, Wang X, Wang Y, Zhao X, Jiang K. An OMV-Based Nanovaccine as Antigen Presentation Signal Enhancer for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413392. [PMID: 39811977 DOI: 10.1002/adma.202413392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines. To overcome this challenge, a previously established Plug-and-Display tumor vaccine platform based on bacterial outer membrane vesicles (OMVs) is developed into an "Antigen Presentation Signal Enhancer" (APSE) by surface-modifying PD-L1 antibodies (αPD-L1). While delivering tumor antigens, APSE can activate the expression of co-stimulatory second signals in APCs due to the high immunogenicity of OMVs. More importantly, the surface-modified αPD-L1 binds to the co-inhibitory signals PD-L1, potentially restoring CD80 function and ensuring efficient co-stimulatory second signals and activation of anti-tumor immunity. The results reveal the importance of PD-L1 blockage in the initiation process of anti-tumor immunity, and the second signal modulation capability of APSE can expand the application potential of cancer vaccines to less immunogenic malignancies.
Collapse
Affiliation(s)
- Yichao Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Cheng Cao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yazhou Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| |
Collapse
|
3
|
Dietz AC, Wayne AS. Cells to prevent/treat relapse following allogeneic stem cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:708-715. [PMID: 29222325 PMCID: PMC6142604 DOI: 10.1182/asheducation-2017.1.708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Relapse of cancer remains one of the primary causes of treatment failure and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). A multitude of approaches have been used in the management of posttransplant relapse. This review focuses on recent data with cellular therapies designed to treat or prevent posttransplant relapse of hematologic malignancies, although many of these therapeutic approaches also have applications to solid tumors and in the nontransplant setting. Currently available cell therapies include second transplant, natural killer cells, monocyte-derived dendritic cell vaccines, and lymphocytes via donor lymphocyte infusion, antigen-primed cytotoxic T lymphocytes, cytokine-induced killer cells, marrow-infiltrating lymphocytes, and chimeric antigen receptor T cells. These treatment options offer the prospect for improved relapse-free survival after HSCT.
Collapse
Affiliation(s)
- Andrew C. Dietz
- Children’s Center for Cancer and Blood Diseases, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA; and
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Alan S. Wayne
- Children’s Center for Cancer and Blood Diseases, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA; and
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|