1
|
Jiangzhou H, Zhang H, Sun R, Fahira A, Wang K, Li Z, Shi Y, Wang Z. Integrative omics analysis reveals effective stratification and potential prognosis markers of pan-gastrointestinal cancers. iScience 2021; 24:102824. [PMID: 34381964 PMCID: PMC8340129 DOI: 10.1016/j.isci.2021.102824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Gastrointestinal (GI) tract cancers are the most common malignant cancers with high mortality rate. Pan-cancer multi-omics data fusion provides a powerful strategy to examine commonalities and differences among various cancer types and benefits for the identification of pan-cancer drug targets. Herein, we conducted an integrative omics analysis on The Cancer Genome Atlas pan-GI samples including six carcinomas and stratified into 9 clusters, i.e. 5 single-type-dominant clusters and 4 mixed clusters, the clustering reveals the molecular features of different subtypes, other than the organ and cell-of-origin classifications. Especially the mixed clusters revealed the homogeneity of pan-GI cancers. We demonstrated that the prognosis differences among pan-GI subtypes based on multi-omics integration are more significant than clustering by single-omics. The potential prognostic markers for pan-GI stratification were identified by proportional hazards model, such as PSCA (for colorectal and stomach cancer) and PPP1CB (for liver and pancreatic cancer), which have prominent prognostic power supported by high concordance index. Pan-cancer multi-omics strategy reveals homogeneity and heterogeneity of pan-GI cancers Identify 9 iclusters with significantly different survival and molecular features Potential prognostic markers have prominent power supported by concordance index
Collapse
Affiliation(s)
- Huiting Jiangzhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 2020; 19:32. [PMID: 32061257 PMCID: PMC7023714 DOI: 10.1186/s12943-020-01151-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of haematological malignancies as well as solid tumours have been substantially improved over the past decades, and impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive microenvironment for enhanced therapy.
Collapse
Affiliation(s)
- Jia-qiao Fan
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Fei Wang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hai-Long Chen
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jugal K. Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| |
Collapse
|
3
|
Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 2019; 3:130-137. [PMID: 30923782 PMCID: PMC6422798 DOI: 10.1002/ags3.12225] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/08/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer remains a highly recalcitrant disease despite the development of systemic chemotherapies. New treatment options are thus urgently required. Dense stromal formation, so-called "desmoplastic stroma," plays controversial roles in terms of pancreatic cancer growth, invasion, and metastasis. Cells such as cancer-associated fibroblasts, endothelial cells, and immune cells comprise the tumor microenvironment of pancreatic cancer. Pancreatic cancer is considered an immune-quiescent disease, but activation of immunological response in pancreatic cancer may contribute to favorable outcomes. Herein, we review the role of the tumor microenvironment in pancreatic cancer, with a focus on immunological aspects.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yukihiko Hiroshima
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ryusei Matsuyama
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yuki Homma
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Robert M. Hoffman
- AntiCancer, Inc.San DiegoCalifornia
- Department of SurgeryUniversity of CaliforniaSan DiegoCalifornia
| | - Itaru Endo
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
4
|
Abstract
Pancreatic cancer is an aggressive and intractable malignancy with high mortality. This is due in part to a high resistance to chemotherapeutics and radiation treatment conferred by diverse regulatory mechanisms. Among these, constituents of the nuclear envelope play a significant role in regulating oncogenesis and pancreatic tumor biology, and this review focuses on three specific components and their roles in cancer. The LINC complex is a nuclear envelope component formed by proteins with SUN and KASH domains that interact in the periplasmic space of the nuclear envelope. These interactions functionally and structurally couple the cytoskeleton to chromatin and facilitates gene regulation informed by cytoplasmic activity. Furthermore, cancer cell invasiveness is impacted by LINC complex biology. The nuclear lamina is adjacent to the inner nuclear membrane of the nuclear envelope and can actively regulate chromatin in addition to providing structural integrity to the nucleus. A disrupted lamina can impart biophysical compromise to nuclear structure and function, as well as form dysfunctional micronuclei that may lead to genomic instability and chromothripsis. In close relationship to the nuclear lamina is the nuclear pore complex, a large megadalton structure that spans both outer and inner membranes of the nuclear envelope. The nuclear pore complex mediates bidirectional nucleocytoplasmic transport and is comprised of specialized proteins called nucleoporins that are overexpressed in many cancers and are diagnostic markers for oncogenesis. Furthermore, recent demonstration of gene regulatory functions for discrete nucleoporins independent of their nuclear trafficking function suggests that these proteins may contribute more to malignant phenotypes beyond serving as biomarkers. The nuclear envelope is thus a complex, intricate regulator of cell signaling, with roles in pancreatic tumorigenesis and general oncogenic transformation.
Collapse
Affiliation(s)
| | - Randolph S. Faustino
- Genetics and Genomics, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|