1
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
2
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
3
|
Posarelli M, Romano D, Tucci D, Giannaccare G, Scorcia V, Taloni A, Pagano L, Borgia A. Ocular-Surface Regeneration Therapies for Eye Disorders: The State of the Art. BIOTECH 2023; 12:48. [PMID: 37366796 DOI: 10.3390/biotech12020048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The ocular surface is a complex structure that includes cornea, conjunctiva, limbus, and tear film, and is critical for maintaining visual function. When the ocular-surface integrity is altered by a disease, conventional therapies usually rely on topical drops or tissue replacement with more invasive procedures, such as corneal transplants. However, in the last years, regeneration therapies have emerged as a promising approach to repair the damaged ocular surface by stimulating cell proliferation and restoring the eye homeostasis and function. This article reviews the different strategies employed in ocular-surface regeneration, including cell-based therapies, growth-factor-based therapies, and tissue-engineering approaches. Dry eye and neurotrophic keratopathy diseases can be treated with nerve-growth factors to stimulate the limbal stem-cell proliferation and the corneal nerve regeneration, whereas conjunctival autograft or amniotic membrane are used in subjects with corneal limbus dysfunction, such as limbal stem-cell deficiency or pterygium. Further, new therapies are available for patients with corneal endothelium diseases to promote the expansion and migration of cells without the need of corneal keratoplasty. Finally, gene therapy is a promising new frontier of regeneration medicine that can modify the gene expression and, potentially, restore the corneal transparency by reducing fibrosis and neovascularization, as well as by stimulating stem-cell proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Matteo Posarelli
- St. Paul's Eye Unit, Department of Corneal Diseases, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Davide Romano
- Eye Clinic, Department of Neurological and Vision Sciences, University of Brescia, 25123 Brescia, Italy
- Eye Unit, University Hospitals of Leicester, NHS Trust, Leicester LE1 5WW, UK
| | - Davide Tucci
- Department of Biomedical and Surgical Sciences, Section of Ophthalmology, S. Maria Della Misericordia Hospital, University of Perugia, 06123 Perugia, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Taloni
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Pagano
- St. Paul's Eye Unit, Department of Corneal Diseases, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
| | - Alfredo Borgia
- St. Paul's Eye Unit, Department of Corneal Diseases, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
- Eye Unit, Humanitas-Gradenigo Hospital, 10153 Turin, Italy
| |
Collapse
|
4
|
Tavakkoli F, Eleiwa TK, Elhusseiny AM, Damala M, Rai AK, Cheraqpour K, Ansari MH, Doroudian M, H Keshel S, Soleimani M, Djalilian AR, Sangwan VS, Singh V. Corneal stem cells niche and homeostasis impacts in regenerative medicine; concise review. Eur J Ophthalmol 2023:11206721221150065. [PMID: 36604831 DOI: 10.1177/11206721221150065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The limbal stem cells niche (LSCN) is an optimal microenvironment that provides the limbal epithelial stem cells (LESCs) and strictly regulates their proliferation and differentiation. Disturbing the LSCN homeostasis can lead to limbal stem cell dysfunction (LSCD) and subsequent ocular surface aberrations, such as corneal stromal inflammation, persistent epithelial defects, corneal neovascularisation, lymphangiogenesis, corneal opacification, and conjunctivalization. As ocular surface disorders are considered the second main cause of blindness, it becomes crucial to explore different therapeutic strategies for restoring the functions of the LSCN. A major limitation of corneal transplantation is the current shortage of donor tissue to meet the requirements worldwide. In this context, it becomes mandatory to find an alternative regenerative medicine, such as using cultured limbal epithelial/stromal stem cells, inducing the production of corneal like cells by using other sources of stem cells, and using tissue engineering methods aiming to produce the three-dimensional (3D) printed cornea. Limbal epithelial stem cells have been considered the magic potion for eye treatment. Epithelial and stromal stem cells in the limbal niche hold the responsibility of replenishing the corneal epithelium. These stem cells are being used for transplantation to maintain corneal epithelial integrity and ultimately sustain optimal vision. In this review, we summarised the characteristics of the LSCN and their current and future roles in restoring corneal homeostasis in eyes with LSCD.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Iraq.,SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Taher K Eleiwa
- Department of Ophthalmology, Benha University, Benha, Egypt
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mukesh Damala
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit K Rai
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Kasra Cheraqpour
- Translational Eye Research Center, Farabi Eye Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - Saeed H Keshel
- Department of Tissue Engineering and Applied Cell Sciences, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Vivek Singh
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
5
|
Romanov YA. [Corneal regeneration: is there a place for tissues of perinatal origin?]. Vestn Oftalmol 2023; 139:121-128. [PMID: 37942606 DOI: 10.17116/oftalma2023139051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The article reviews the main properties of the cornea and the mechanisms of its physiological regeneration and repair in response to damage and describes the most promising methods of treatment aimed at stimulating limbal stem cells and based on the use of native tissues of perinatal origin, umbilical cord mesenchymal stromal cells, and cell-free therapeutic products.
Collapse
Affiliation(s)
- Yu A Romanov
- National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Moscow, Russia
| |
Collapse
|
6
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Tan Y, Chen D, Wang Y, Wang W, Xu L, Liu R, You C, Li G, Zhou H, Li D. Limbal Bio-engineered Tissue Employing 3D Nanofiber-Aerogel Scaffold to Facilitate LSCs Growth and Migration. Macromol Biosci 2022; 22:e2100441. [PMID: 35020979 DOI: 10.1002/mabi.202100441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Constrained by the existing scaffold inability to mimic limbal niche, limbal bio-engineered tissue constructed in vitro is challenging to be widely used in clinical practice. Here, 3D nanofiber-aerogel scaffold was fabricated by employing thermal cross-linking electrospinned film Polycaprolactone (PCL) and gelatin (GEL) as the precursor. Benefiting from the cross-linked (160°C, vacuum) structure, the homogenized and lyophilized 3D nanofiber-aerogel scaffold with preferable mechanical strength was capable of refraining the volume collapse in humid vitro. Intriguingly, compared with traditional electrospinning scaffolds, our 3D nanofiber-aerogel scaffolds possessed enhanced water absorption (1100%-1300%), controllable aperture (50-100 μm) and excellent biocompatibility (optical density value, 0.953 ± 0.021). The well-matched aperture and nanostructure of the scaffolds with cells enabled the construction of limbal bio-engineered tissue. It is foreseen that the proposed general method could be extended to various aerogels, providing new opportunities for the development of novel limbal bio-engineered tissue. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongyao Tan
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Chen
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wang
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lingjuan Xu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rong Liu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunxiu You
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guigang Li
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huamin Zhou
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dequn Li
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Elhusseiny AM, Soleimani M, Eleiwa TK, ElSheikh RH, Frank CR, Naderan M, Yazdanpanah G, Rosenblatt MI, Djalilian AR. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:259-268. [PMID: 35303110 PMCID: PMC8968724 DOI: 10.1093/stcltm/szab028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
The corneal epithelium serves to protect the underlying cornea from the external environment and is essential for corneal transparency and optimal visual function. Regeneration of this epithelium is dependent on a population of stem cells residing in the basal layer of the limbus, the junction between the cornea and the sclera. The limbus provides the limbal epithelial stem cells (LESCs) with an optimal microenvironment, the limbal niche, which strictly regulates their proliferation and differentiation. Disturbances to the LESCs and/or their niche can lead to the pathologic condition known as limbal stem cell deficiency (LSCD) whereby the corneal epithelium is not generated effectively. This has deleterious effects on the corneal and visual function, due to impaired healing and secondary corneal opacification. In this concise review, we summarize the characteristics of LESCs and their niche, and present the current and future perspectives in the management of LSCD with an emphasis on restoring the function of the limbal niche.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Taher K Eleiwa
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Reem H ElSheikh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles R Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Morteza Naderan
- Department of Ophthalmology, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author: Ali R. Djalilian, Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Vattulainen M, Ilmarinen T, Viheriälä T, Jokinen V, Skottman H. Corneal epithelial differentiation of human pluripotent stem cells generates ABCB5 + and ∆Np63α + cells with limbal cell characteristics and high wound healing capacity. Stem Cell Res Ther 2021; 12:609. [PMID: 34930437 PMCID: PMC8691049 DOI: 10.1186/s13287-021-02673-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
Background Differentiation of functional limbal stem cells (LSCs) from human pluripotent stem cells (hPSCs) is an important objective which can provide novel treatment solutions for patients suffering from limbal stem cell deficiency (LSCD). Yet, further characterization is needed to better evaluate their immunogenicity and regenerative potential before clinical applications. Methods Human PSCs were differentiated towards corneal fate and cryopreserved using a clinically applicable protocol. Resulting hPSC-LSC populations were examined at days 10–11 and 24–25 during differentiation as well as at passage 1 post-thaw. Expression of cornea-associated markers including PAX6, ABCG2, ∆Np63α, CK15, CK14, CK12 and ABCB5 as well as human leukocyte antigens (HLAs) was analyzed using immunofluorescence and flow cytometry. Wound healing properties of the post-thaw hPSC-LSCs were assessed via calcium imaging and scratch assay. Human and porcine tissue-derived cultured LSCs were used as controls for marker expression analysis and scratch assays at passage 1. Results The day 24–25 and post-thaw hPSC-LSCs displayed a similar marker profile with the tissue-derived LSCs, showing abundant expression of PAX6, ∆Np63α, CK15, CK14 and ABCB5 and low expression of ABCG2. In contrast, day 10–11 hPSC-LSCs had lower expression of ABCB5 and ∆Np63α, but high expression of ABCG2. A small portion of the day 10–11 cells coexpressed ABCG2 and ABCB5. The expression of class I HLAs increased during hPSC-LSCs differentiation and was uniform in post-thaw hPSC-LSCs, however the intensity was lower in comparison to tissue-derived LSCs. The calcium imaging revealed that the post-thaw hPSC-LSCs generated a robust response towards epithelial wound healing signaling mediator ATP. Further, scratch assay revealed that post-thaw hPSC-LSCs had higher wound healing capacity in comparison to tissue-derived LSCs. Conclusions Clinically relevant LSC-like cells can be efficiently differentiated from hPSCs. The post-thaw hPSC-LSCs possess functional potency in calcium responses towards injury associated signals and in wound closure. The developmental trajectory observed during hPSC-LSC differentiation, giving rise to ABCG2+ population and further to ABCB5+ and ∆Np63α+ cells with limbal characteristics, indicates hPSC-derived cells can be utilized as a valuable cell source for the treatment of patients afflicted corneal blindness due to LSCD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02673-3.
Collapse
Affiliation(s)
- Meri Vattulainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Vilma Jokinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| |
Collapse
|
10
|
Watanabe S, Hayashi R, Sasamoto Y, Tsujikawa M, Ksander BR, Frank MH, Quantock AJ, Frank NY, Nishida K. Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities. iScience 2021; 24:102688. [PMID: 34195566 PMCID: PMC8233200 DOI: 10.1016/j.isci.2021.102688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can generate a multiplicity of organoids, yet no compelling evidence currently exists as to whether or not these contain tissue-specific, holoclone-forming stem cells. Here, we show that a subpopulation of cells in a hiPSC-derived corneal epithelial cell sheet is positive for ABCB5 (ATP-binding cassette, sub-family B, member 5), a functional marker of adult corneal epithelial stem cells. These cells possess remarkable holoclone-forming capabilities, which can be suppressed by an antibody-mediated ABCB5 blockade. The cell sheets are generated from ABCB5+ hiPSCs that first emerge in 2D eye-like organoids around six weeks of differentiation and display corneal epithelial immunostaining characteristics and gene expression patterns, including sustained expression of ABCB5. The findings highlight the translational potential of ABCB5-enriched, hiPSC-derived corneal epithelial cell sheets to recover vision in stem cell-deficient human eyes and represent the first report of holoclone-forming stem cells being directly identified in an hiPSC-derived organoid. Human iPS cell-derived corneal epithelia contain ABCB5-positive stem cells The ABCB5-positive cells possess holoclone-forming capabilities An antibody-mediated ABCB5 blockade suppresses holoclone formation Holoclone-forming stem cells are present in a human iPS cell-derived tissue construct
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuzuru Sasamoto
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Motokazu Tsujikawa
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Division of Health Sciences, Suita, Osaka 565-0871, Japan
| | - Bruce R Ksander
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Markus H Frank
- Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
| | - Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA.,Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Process development and safety evaluation of ABCB5 + limbal stem cells as advanced-therapy medicinal product to treat limbal stem cell deficiency. Stem Cell Res Ther 2021; 12:194. [PMID: 33741066 PMCID: PMC7980611 DOI: 10.1186/s13287-021-02272-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells, prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane-spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue. Methods We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product (ATMP). This product was tested in a preclinical study program investigating the cells’ engraftment potential, biodistribution behavior, and safety. Results ABCB5+ LSCs were reliably expanded and manufactured as an ATMP that contains comparably high percentages of cells expressing transcription factors critical for LSC stemness maintenance (p63) and corneal epithelial differentiation (PAX6). Preclinical studies confirmed local engraftment potential of the cells and gave no signals of toxicity and tumorgenicity. These findings were sufficient for the product to be approved by the German Paul Ehrlich Institute and the U.S. Food & Drug Administration to be tested in an international multicenter phase I/IIa clinical trial (NCT03549299) to evaluate the safety and therapeutic efficacy in patients with LSCD. Conclusion Building upon these data in conjunction with the previously shown cornea-restoring capacity of human ABCB5+ LSCs in animal models of LSCD, we provide an advanced allogeneic LSC-based treatment strategy that shows promise for replenishment of the patient’s LSC pool, recreation of a functional barrier against invading conjunctival cells and restoration of a transparent, avascular cornea. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02272-2.
Collapse
|
12
|
Adil MT, Henry JJ. Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. Genesis 2021; 59:e23411. [PMID: 33576188 DOI: 10.1002/dvg.23411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Williams AL, Bohnsack BL. The Ocular Neural Crest: Specification, Migration, and Then What? Front Cell Dev Biol 2021; 8:595896. [PMID: 33425902 PMCID: PMC7785809 DOI: 10.3389/fcell.2020.595896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
During vertebrate embryonic development, a population of dorsal neural tube-derived stem cells, termed the neural crest (NC), undergo a series of morphogenetic changes and extensive migration to become a diverse array of cell types. Around the developing eye, this multipotent ocular NC cell population, called the periocular mesenchyme (POM), comprises migratory mesenchymal cells that eventually give rise to many of the elements in the anterior of the eye, such as the cornea, sclera, trabecular meshwork, and iris. Molecular cell biology and genetic analyses of congenital eye diseases have provided important information on the regulation of NC contributions to this area of the eye. Nevertheless, a complete understanding of the NC as a contributor to ocular development remains elusive. In addition, positional information during ocular NC migration and the molecular pathways that regulate end tissue differentiation have yet to be fully elucidated. Further, the clinical challenges of ocular diseases, such as Axenfeld-Rieger syndrome (ARS), Peters anomaly (PA) and primary congenital glaucoma (PCG), strongly suggest the need for better treatments. While several aspects of NC evolution have recently been reviewed, this discussion will consolidate the most recent current knowledge on the specification, migration, and contributions of the NC to ocular development, highlighting the anterior segment and the knowledge obtained from the clinical manifestations of its associated diseases. Ultimately, this knowledge can inform translational discoveries with potential for sorely needed regenerative therapies.
Collapse
Affiliation(s)
- Antionette L Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Brenda L Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States.,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
14
|
Zhao M, Zhang H, Zhen D, Huang M, Li W, Li Z, Liu Y, Xie Y, Zeng B, Wang Z, Huang B. Corneal Recovery Following Rabbit Peripheral Blood Mononuclear Cell-Amniotic Membrane Transplantation with Antivascular Endothelial Growth Factor in Limbal Stem Cell Deficiency Rabbits. Tissue Eng Part C Methods 2020; 26:541-552. [PMID: 33019886 DOI: 10.1089/ten.tec.2020.0209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Limbal stem cell deficiency (LSCD) is a refractory ocular surface disorder characterized by progressive corneal epithelial degeneration, conjunctivalization, and neovascularization, potentially leading to blindness. There are currently no effective therapeutic options for patients experiencing routine symptomatic treatment failure. Transplantation of amniotic membrane (AM) with adherent stem cells (but not bare AM transplantation alone) has shown promise in preclinical studies for ocular surface restoration. A major limitation, however, is finding a reliable stem cell source. Stem cells can be isolated from the peripheral blood mononuclear cell (PBMC) population, and these PBMC-derived stem cells have numerous advantages over allogeneic and other autologous stem cell types for therapeutic application, including relative ease of acquisition, nonimmunogenicity, and the absence of ethical issues associated with embryonic stem cells. Experiment: We examined the efficacy of autologous PBMC-AM sheet cultures combined with postoperative antiangiogenesis treatment for corneal restoration in LSCD model rabbits. Rabbit PBMCs (rPBMCs) were isolated, labeled with EdU for in vivo tracing, and then cultured on AMs in conditioned medium before transplantation. Rabbits were transplanted with bare AMs (group 1), rPBMC-AM sheets (group 2), or rPBMC-AM sheets plus postoperative treatment with the vascular endothelial growth factor antagonist bevacizumab (group 3). Corneal opacity and neovascularization were monitored by slit-lamp imaging for 8 weeks and corneas were examined histologically at 1 and 2 months. Results: Corneal opacity decreased in all three groups over 8 weeks, but was significantly lower in group 2 and even lower in group 3. Corneal neovascularization was significantly higher in group 1 throughout the observation period, and significantly lower in group 3 than group 1 and 2 by 8 weeks post-transplant. At 4 weeks, the corneal surface completed epithelialization (although thinner than normal) in group 3 but still patchy in groups 1 and 2. By 8 weeks, the epithelium in group 3 was complete and smooth, resembling a normal epithelium. Integrin β1 as a progenitor marker was also generally higher in groups 2 and 3. Conclusions: Autologous rPBMC-AM sheets with post-transplant topical bevacizumab can effectively facilitate corneal epithelium recovery in a LSCD model, suggesting clinical utility for LSCD-related ocular surface diseases. Impact statement Limbal stem cell deficiency (LSCD) increases corneal opacity and vascularization, resulting in severe visual impairment or even blindness. Traditional surgical limbal transplant is currently the main treatment option for LSCD, but carries the risks of rejection and immunosuppressant side effects. Autologous stem cell-based therapy is a promising alternative approach, but a reliable stem cell source is a major limitation. We report that transplantation of autologous rabbit peripheral blood mononuclear cell-amniotic membrane sheets plus antivascular endothelial growth factor restored avascular transparent cornea in a rabbit LSCD model. These results demonstrate a potentially effective approach for ocular surface reconstruction in bilateral LSCD.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Dongqin Zhen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | | | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Yaojue Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou, China
| |
Collapse
|
15
|
Corneal Stem Cells as a Source of Regenerative Cell-Based Therapy. Stem Cells Int 2020; 2020:8813447. [PMID: 32765614 PMCID: PMC7388005 DOI: 10.1155/2020/8813447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
In the past few years, intensive research has focused on corneal stem cells as an unlimited source for cell-based therapy in regenerative ophthalmology. Today, it is known that the cornea has at least two types of stem cells: limbal epithelial stem cells (LESCs) and corneal stromal stem cells (CSSCs). LESCs are used for regeneration of corneal surface, while CSSCs are used for regeneration of corneal stroma. Until now, various approaches and methods for isolation of LESCs and CSSCs and their successful transplantation have been described and tested in several preclinical studies and clinical trials. This review describes in detail phenotypic characteristics of LESCs and CSSCs and discusses their therapeutic potential in corneal regeneration. Since efficient and safe corneal stem cell-based therapy is still a challenging issue that requires continuous cooperation between researchers, clinicians, and patients, this review addresses the important limitations and suggests possible strategies for improvement of corneal stem cell-based therapy.
Collapse
|
16
|
Peripheral Blood As a Source of Stem Cells for Regenerative Medicine: Emphasis Towards Corneal Epithelial Reconstruction-An In Vitro Study. Tissue Eng Regen Med 2020; 17:495-510. [PMID: 32572811 DOI: 10.1007/s13770-020-00273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-based treatments are now emerging as a therapy for corneal epithelial damage. Although bone marrow, adipose tissue and umbilical cord blood are the main sources of mesenchymal stem cells (MSCs), other tissues like the peripheral blood also harbor mesenchymal-like stem cells called peripheral blood-derived mononuclear cells (PBMNCs). These blood derived stem cells gained a lot of attention due to its minimally invasive collection and ease of isolation. In this study, the feasibility of using PBMNCs as an alternative cell source to corneal limbal stem cells envisaging corneal epithelial regeneration was evaluated. METHODS Rabbit PBMNCs were isolated using density gradient centrifugation and was evaluated for mesenchymal cell properties including stemness. PBMNCs were differentiated to corneal epithelial lineage using rabbit limbal explant conditioned media and was evaluated by immuno-cytochemistry and gene expression analysis. Further, the differentiated PBMNCs were engineered into a cell sheet using an in-house developed thermo-responsive polymer. RESULTS These blood derived cells were demonstrated to have similar properties to mesenchymal stem cells. Corneal epithelial lineage commitment of PBMNCs was confirmed by the positive expression of CK3/12 marker thereby demonstrating the aptness as an alternative to limbal stem cells. These differentiated cells effectively generated an in vitro cell sheet that was then demonstrated for cell sheet transfer on an ex vivo excised rabbit eye. CONCLUSION PBMNCs as an alternative autologous cell source for limbal stem cells is envisaged as an effective therapeutic strategy for corneal surface reconstruction especially for patients with bilateral limbal stem cell deficiency.
Collapse
|
17
|
Zhang C, Mei H, Robertson SYT, Lee HJ, Deng SX, Zheng JJ. A Small-Molecule Wnt Mimic Improves Human Limbal Stem Cell Ex Vivo Expansion. iScience 2020; 23:101075. [PMID: 32361505 PMCID: PMC7200314 DOI: 10.1016/j.isci.2020.101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Ex vivo cultured limbal stem/progenitor cells is an effective alternative to other surgical treatments for limbal stem cell deficiency, but a standard xenobiotic-free method for culturing the LSCs in vitro needs to be optimized. Because Wnt ligands are required for LSC expansion and preservation in vitro, to create a small-molecule Wnt mimic, we created a consolidated compound by linking a Wnt inhibitor that binds to the Wnt co-receptor Frizzled to a peptide derived from the N-terminal Dickkopf-1 that binds to Lrp (low-density lipoprotein receptor-related protein) 5/6, another Wnt co-receptor. This Wnt mimic not only enhances cellular Wnt signaling activation, but also improves the progenitor cell phenotype of in vitro cultured limbal epithelial cells. As the maintenance of stem cell characteristics in the process of culture expansion is essential for the success of ocular surface reconstruction, the small molecules generated in this study may be helpful in the development of pharmaceutical reagents for treating corneal wounds.
Collapse
Affiliation(s)
- Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hua Mei
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | - Sarah Y T Robertson
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Guo ZH, Zeng YM, Lin JS. Dynamic spatiotemporal expression pattern of limbal stem cell putative biomarkers during mouse development. Exp Eye Res 2020; 192:107915. [PMID: 31911164 DOI: 10.1016/j.exer.2020.107915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Limbal stem cells (LSCs), a subpopulation of limbal epithelial basal cells, are crucial to the homeostasis and wound healing of corneal epithelium. The identification and isolation of LSCs remains a challenge due to lack of specific LSCs biomarkers. In this study, Haematoxylin-eosin (HE), 4', 6-diamidino-2-phenylindole (DAPI), and immunohistochemistry (IHC) stains were performed on the pre- and post-natal limbus tissues of mice which has the advantage of more controllable in term of sampling age relative to human origin. By morphological analysis, we supported that there is an absence of the Palisades of Vogt (POV) in the mouse. The development of prenatal and neonatal cornea was dominated by its stroma, whereas after eyelids opened at P14, the corneal epithelial cells (CECs) quickly go stratification in response to the liquid-air interface. Based on IHC staining, we found that the expression of LSCs putative biomarkers in limbal epithelial basal cells appeared in chronological order as follows: Vim = p63 > CK14 > CK15 (where = represents same time; > represents earlier), and in corneal epithelial basal cells were weakened in chronological order as follows: Vim > p63 > CK15 > CK14, which might also represent the stemness degree. Furthermore, the dynamic spatial expression of the examined LSCs putative biomarkers during mouse development also implied a temporal restriction. The expression of Vim in epithelial cells of mouse ocular surface occurred during E12-E19 only. The expression of CK15 was completely undetectable in CECs after P14, whereas the others putative molecular markers of LSCs, such as p63 and CK14, still remained weak expression, suggesting that CK15 was suitable to serve as the mouse LSCs biomarkers after P14. In this study, our data demonstrated the dynamic spatiotemporal expression pattern of LSCs putative biomarkers in mouse was age-related and revealed the time spectrum of the expression of LSCs in mouse, which adds in our knowledge by understanding the dynamic expression pattern of biomarkers of stem cells relate to maintenance of their stemness.
Collapse
Affiliation(s)
- Zhi Hou Guo
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China; Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Yi Ming Zeng
- The Second Affiliated Hospital of Fujian Medical University, China.
| | - Jun Sheng Lin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China.
| |
Collapse
|
19
|
Investigation of factors associated with ABCB5-positive limbal stem cell isolation yields from human donors. Ocul Surf 2019; 18:114-120. [PMID: 31655212 DOI: 10.1016/j.jtos.2019.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify factors associated with isolation yields of ATP-binding cassette (ABC) superfamily member B5 (ABCB5)-positive limbal stem cells (LSCs) from human cadaveric donor eyes. METHODS Whole eye globes were obtained from the Saving Sight eye bank, Kansas City, MO and the CorneaGen eye bank, Seattle, WA. ABCB5-positive LSCs were sorted by flow cytometry upon anti-ABCB5 monoclonal antibody staining within one week after donor death. The yields of live limbal epithelial cells in their entirety and of isolated pure ABCB5-positive LSC subsets were correlated with variables contained in the eye donors' medical information. RESULTS The mean isolation yield of live limbal epithelial cells and ABCB5-positive LSCs per donor eye was (340,000 ± 160,000 and 2,608 ± 1,842 respectively, mean ± SD). Stepwise regression analysis showed that cardiac disease-related death was the strongest negative predictor of the ABCB5-positive LSC isolation yield (p = 0.01). While we observed a trend for an age-related decline in the yield of ABCB5-positive LSCs, a statistically significant association could not be established (2% decrease/year, p = 0.11). Additionally, despite a trend for decreased isolation yields of total live limbal epithelial cells isolated from single donors with a longer time between death and tissue processing (p = 0.04), this did not affect the yields of purified ABCB5-positive LSC, which was independent of increasing time between death and tissue processing (p = 0.50). CONCLUSIONS Our study identifies cardiac disease-related death as a donor variable significantly associated with lower ABCB5-positive LSC isolation yields.
Collapse
|
20
|
Adil MT, Simons CM, Sonam S, Henry JJ. Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus. Exp Eye Res 2019; 187:107767. [PMID: 31437439 DOI: 10.1016/j.exer.2019.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Limbal Stem Cell Deficiency (LSCD) is a painful and debilitating disease that results from damage or loss of the Corneal Epithelial Stem Cells (CESCs). Therapies have been developed to treat LSCD by utilizing epithelial stem cell transplants. However, effective repair and recovery depends on many factors, such as the source and concentration of donor stem cells, and the proper conditions to support these transplanted cells. We do not yet fully understand how CESCs heal wounds or how transplanted CESCs are able to restore transparency in LSCD patients. A major hurdle has been the lack of vertebrate models to study CESCs. Here we utilized a short treatment with Psoralen AMT (a DNA cross-linker), immediately followed by UV treatment (PUV treatment), to establish a novel frog model that recapitulates the characteristics of cornea stem cell deficiency, such as pigment cell invasion from the periphery, corneal opacity, and neovascularization. These PUV treated whole corneas do not regain transparency. Moreover, PUV treatment leads to appearance of the Tcf7l2 labeled subset of apical skin cells in the cornea region. PUV treatment also results in increased cell death, immediately following treatment, with pyknosis as a primary mechanism. Furthermore, we show that PUV treatment causes depletion of p63 expressing basal epithelial cells, and can stimulate mitosis in the remaining cells in the cornea region. To study the response of CESCs, we created localized PUV damage by focusing the UV radiation on one half of the cornea. These cases initially develop localized stem cell deficiency characteristics on the treated side. The localized PUV treatment is also capable of stimulating some mitosis in the untreated (control) half of those corneas. Unlike the whole treated corneas, the treated half is ultimately able to recover and corneal transparency is restored. Our study provides insight into the response of cornea cells following stem cell depletion, and establishes Xenopus as a suitable model for studying CESCs, stem cell deficiency, and other cornea diseases. This model will also be valuable for understanding the nature of transplanted CESCs, which will lead to progress in the development of therapeutics for LSCD.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Claire M Simons
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Surabhi Sonam
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kethiri AR, Raju E, Bokara KK, Mishra DK, Basu S, Rao CM, Sangwan VS, Singh V. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns. Exp Eye Res 2019; 185:107665. [PMID: 31095932 DOI: 10.1016/j.exer.2019.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Limbal stem cell deficiency (LSCD) is one of the serious cause of visual impairment and blindness with loss of corneal clarity and vascularization. Factors such as ocular burns (acids, lime, thermal), genetic disorders or infections results in the loss of limbal stem cells leading to LSCD. Reliable animal models of LSCD are useful for understanding the pathophysiology and developing novel therapeutic approaches. The purpose of the present study was to validate small and large animal models of LSCD by immunohistochemcal, clinical and histopathological comparison with human. The animal models of LSCD were created by topical administration of sodium hydroxide on the ocular surface of C57BL/6 mice (m, n = 12) and New Zealand white rabbits (r, n = 12) as per the standard existing protocol. Human corneal specimens (h, n = 12) were obtained from tissue bank who had chemical burn-induced LSCD. All samples were either paraffin embedded or frozen in cryogenic medium and the sections were processed for Hematoxylin-Eosin and Periodic Acid-Schiff staining to analyse the morphology and histopathological features of the corneal surface such as vascularization, inflammation, presence of goblet cells, epithelial hyperplasia and keratinization. Immunofluorescence was performed to distinguish between corneal (CK3+), conjunctival (CK19+) and epidermal (CK10+) epithelial phenotype. Histological analysis of corneal specimens from the three groups showed the presence of goblet cells (h:83%, m:50%, r:50%, p = 0.014), epithelial hypertrophy (h:92%, m:50%, r:66.6%, p = 0.04), epithelial hyperplasia (h:50%, m:17%, r:17%, p = 0.18), intra epithelial edema (h:42%, m:33%, r:100%, p = 0.02), stromal inflammation (h:100%, m:67%, r:67%, p = 0.01) and stromal vascularization (h:100%, m:50%, r:67%), in varying proportions. Immunostaining showed presence of total LSCD (CK19 + and/or CK10+, CK3-) in 92% of human and 50% of animal specimens. While partial LSCD (CK19 + and/or CK10+, CK3+) was seen in 8% of human and 50% of animal specimens. Our study shows the significant differences in the extent of vascularization, inflammation, epithelial thickness and goblet cell formation in mice and rabbit models of LSCD when compared to post-chemical burn LSCD in human corneas. In both mice and rabbit models complete LSCD developed in only 50% of cases and this important fact needs to be considered when working with animal models of LSCD.
Collapse
Affiliation(s)
- Abhinav Reddy Kethiri
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; (b).Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Enoch Raju
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, Medical Biotechnology Complex, Uppal Road, Hyderabad, India
| | - Dilip Kumar Mishra
- Ophthalmic Pathology Laboratory, L.V. Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
| | - Ch Mohan Rao
- CSIR-Center for Cellular and Molecular Biology, Medical Biotechnology Complex, Uppal Road, Hyderabad, India
| | - Virender Singh Sangwan
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
| | - Vivek Singh
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
23
|
Bains KK, Fukuoka H, Hammond GM, Sotozono C, Quantock AJ. Recovering vision in corneal epithelial stem cell deficient eyes. Cont Lens Anterior Eye 2019; 42:350-358. [PMID: 31047800 PMCID: PMC6611221 DOI: 10.1016/j.clae.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Corneal limbal epithelial stem cells deficiencies cause severe ocular surface instability and visual impairment. These conditions, caused by injury or disease, are very difficult to treat. Laboratory-grown epithelial cell sheets expanded from healthy limbal tissue can be used to reconstruct the ocular surface. Other epithelia, such as the oral mucosa, can be used to generate the therapeutic cell sheets.
A healthy corneal epithelium, which is essential for proper vision and protection from external pathogens, is continuously replenished throughout life by stem cells located at the limbus. In diseased or injured eyes, however, in which stem cells are deficient, severe ocular problems manifest themselves. These are notoriously difficult to manage and as a result the last 20 or so years has seen a number of therapeutic strategies emerge that aim to recover the ocular surface and restore vision in limbal stem cell deficient eyes. The dominant concept involves the generation of laboratory cultivated epithelial cell sheets expanded from small biopsies of the epithelial limbus (for patient or donors) or another non-corneal epithelial tissue such as the oral mucosa. Typically, cells are grown on sterilised human amniotic membrane as a substrate, which then forms part of the graft, or specially formulated plastic culture dishes from which cells sheets can be released by lowering the temperature, and thus the adherence of the plastic to the cells. Overall, clinical results are promising, as is discussed, with new cultivation methodologies and different cell lineages currently being investigated to augment the treatment options for visual disturbance caused by a corneal epithelial limbal stem cell deficiency.
Collapse
Affiliation(s)
- Kiranjit K Bains
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, United Kingdom.
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8065, Japan.
| | - Greg M Hammond
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, United Kingdom
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8065, Japan.
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, United Kingdom; Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8065, Japan.
| |
Collapse
|
24
|
Utheim OA, Pasovic L, Raeder S, Eidet JR, Fostad IG, Sehic A, Roald B, de la Paz MF, Lyberg T, Dartt DA, Utheim TP. Effects of explant size on epithelial outgrowth, thickness, stratification, ultrastructure and phenotype of cultured limbal epithelial cells. PLoS One 2019; 14:e0212524. [PMID: 30861002 PMCID: PMC6413940 DOI: 10.1371/journal.pone.0212524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose Transplantation of limbal stem cells is a promising therapy for limbal stem cell deficiency. Limbal cells can be harvested from either a healthy part of the patient’s eye or the eye of a donor. Small explants are less likely to inflict injury to the donor site. We investigated the effects of limbal explant size on multiple characteristics known to be important for transplant function. Methods Human limbal epithelial cells were expanded from large versus small explants (3 versus 1 mm of the corneal circumference) for 3 weeks and characterized by light microscopy, immunohistochemistry, and transmission electron microscopy. Epithelial thickness, stratification, outgrowth, ultrastructure and phenotype were assessed. Results Epithelial thickness and stratification were similar between the groups. Outgrowth size correlated positively with explant size (r = 0.37; P = 0.01), whereas fold growth correlated negatively with explant size (r = –0.55; P < 0.0001). Percentage of cells expressing the limbal epithelial cell marker K19 was higher in cells derived from large explants (99.1±1.2%) compared to cells derived from small explants (93.2±13.6%, P = 0.024). The percentage of cells expressing ABCG2, integrin β1, p63, and p63α that are markers suggestive of an immature phenotype; Keratin 3, Connexin 43, and E-Cadherin that are markers of differentiation; and Ki67 and PCNA that indicate cell proliferation were equal in both groups. Desmosome and hemidesmosome densities were equal between the groups. Conclusion For donor- and culture conditions used in the present study, large explants are preferable to small in terms of outgrowth area. As regards limbal epithelial cell thickness, stratification, mechanical strength, and the attainment of a predominantly immature phenotype, both large and small explants are sufficient.
Collapse
Affiliation(s)
- O. A. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian Dry Eye Clinic, Oslo, Norway
- * E-mail:
| | - L. Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - S. Raeder
- Norwegian Dry Eye Clinic, Oslo, Norway
| | - J. R. Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - I. G. Fostad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A. Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Maxillofacial surgery, Oslo University Hospital, Oslo, Norway
| | - B. Roald
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - M. F. de la Paz
- Institut Universitari Barraquer, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - T. Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - D. A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - T. P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Norwegian Dry Eye Clinic, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Maxillofacial surgery, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Soerlandet Hospital Arendal, Arendal, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of Southeast Norway, Kongsberg, Norway
| |
Collapse
|
25
|
Berical A, Lee RE, Randell SH, Hawkins F. Challenges Facing Airway Epithelial Cell-Based Therapy for Cystic Fibrosis. Front Pharmacol 2019; 10:74. [PMID: 30800069 PMCID: PMC6376457 DOI: 10.3389/fphar.2019.00074] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the life-limiting hereditary disease, cystic fibrosis (CF). Decreased or absent functional CFTR protein in airway epithelial cells leads to abnormally viscous mucus and impaired mucociliary transport, resulting in bacterial infections and inflammation causing progressive lung damage. There are more than 2000 known variants in the CFTR gene. A subset of CF individuals with specific CFTR mutations qualify for pharmacotherapies of variable efficacy. These drugs, termed CFTR modulators, address key defects in protein folding, trafficking, abundance, and function at the apical cell membrane resulting from specific CFTR mutations. However, some CFTR mutations result in little or no CFTR mRNA or protein expression for which a pharmaceutical strategy is more challenging and remote. One approach to rescue CFTR function in the airway epithelium is to replace cells that carry a mutant CFTR sequence with cells that express a normal copy of the gene. Cell-based therapy theoretically has the potential to serve as a one-time cure for CF lung disease regardless of the causative CFTR mutation. In this review, we explore major challenges and recent progress toward this ambitious goal. The ideal therapeutic cell would: (1) be autologous to avoid the complications of rejection and immune-suppression; (2) be safely modified to express functional CFTR; (3) be expandable ex vivo to generate sufficient cell quantities to restore CFTR function; and (4) have the capacity to engraft, proliferate and persist long-term in recipient airways without complications. Herein, we explore human bronchial epithelial cells (HBECs) and induced pluripotent stem cells (iPSCs) as candidate cell therapies for CF and explore the challenges facing their delivery to the human airway.
Collapse
Affiliation(s)
- Andrew Berical
- Center for Regenerative Medicine, Boston Medical Center and Boston University, Boston, MA, United States.,The Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Rhianna E Lee
- Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott H Randell
- Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Finn Hawkins
- Center for Regenerative Medicine, Boston Medical Center and Boston University, Boston, MA, United States.,The Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
26
|
Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol 2018; 11:2004-2010. [PMID: 30588437 DOI: 10.18240/ijo.2018.12.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness caused by limbal stem cell deficiency (LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered by the shortage of donors. Pluripotent stem cell technology including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have opened new avenues for treating this disease. iPSCs-derived corneal epithelial cells provide an autologous and unlimited source of cells for the treatment of LSCD. On the other hand, iPSCs of LSCD patients can be used for iPSCs-corneal disease model and new drug discovery. However, prior to clinical trial, the efficacy and safety of these cells in patients with LSCD should be proved. Here we focused on the current status of iPSCs-derived corneal epithelial cells used for cell therapy as well as for corneal disease modeling. The challenges and potential of iPSCs-derived corneal epithelial cells as a choice for clinical treatment in corneal disease were also discussed.
Collapse
Affiliation(s)
- Jie Zhu
- Queen Mary School, Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mark Slevin
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Bao-Qiang Guo
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Shou-Rong Zhu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| |
Collapse
|