1
|
Ghelli Luserna di Rorà A, Jandoubi M, Padella A, Ferrari A, Marranci A, Mazzotti C, Olimpico F, Ghetti M, Ledda L, Bochicchio MT, Paganelli M, Zanoni M, Cafaro A, Servili C, Galimberti S, Gottardi M, Rondoni M, Endri M, Onofrillo D, Audisio E, Marconi G, Simonetti G, Martinelli G. Exploring the role of PARP1 inhibition in enhancing antibody-drug conjugate therapy for acute leukemias: insights from DNA damage response pathway interactions. J Transl Med 2024; 22:1062. [PMID: 39587643 PMCID: PMC11590640 DOI: 10.1186/s12967-024-05838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The introduction of antibody-drug conjugates represents a significant advancement in targeted therapy of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Our study aims to investigate the role of the DNA damage response pathway and the impact of PARP1 inhibition, utilizing talazoparib, on the response of AML and ALL cells to Gemtuzumab ozogamicin (GO) and Inotuzumab ozogamicin (INO), respectively. METHODS AML and ALL cells were treated with GO, INO and γ-calicheamicin in order to induce severe DNA damage and activate the G2/M cell-cycle checkpoint in a dose- and time-dependent manner. The efficacy of PARP1 inhibitors and, in particular, talazoparib in enhancing INO or GO against ALL or AML cells was assessed through measurements of cell viability, cell death, cell cycle progression, DNA damage repair, accumulation of mitotic DNA damage and inhibition of clonogenic capacity. RESULTS We observed that both ALL and AML cell lines activate the G2/M cell-cycle checkpoint in response to γ-calicheamicin-induced DNA damage, highlighting a shared cellular response mechanism. Talazoparib significantly enhanced the efficacy of INO against ALL cell lines, resulting in reduced cell viability, increased cell death, G2/M cell-cycle checkpoint override, accumulation of mitotic DNA damage and inhibition of clonogenic capacity. Strong synergism was observed in primary ALL cells treated with the combination. In contrast, AML cells exhibited a heterogeneous response to talazoparib in combination with GO. Our findings suggest a potential link between the differential responses of ALL and AML cells to the drug combinations and the ability of talazoparibto override G2/M cell-cycle arrest induced by antibody-drug conjugates. CONCLUSION PARP1 emerges as a key player in the response of ALL cells to INO and represents a promising target for therapeutic intervention in this leukemia setting. Our study sheds light on the intricate interplay between the DNA damage response pathway, PARP1 inhibition, and response of γ-calicheamicin-induced DNA damages in AML and ALL. These findings underscore the importance of targeted therapeutic strategies and pave the way for future research aimed at optimizing leukemia treatment approaches.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
- Wellmicro SPA, Bologna, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy.
| | - Andrea Marranci
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Cristina Mazzotti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | | | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Lorenzo Ledda
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Alessandro Cafaro
- Pharmacy, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Chiara Servili
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126, Pisa, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Michela Rondoni
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, Ravenna, Italy
| | - Mauro Endri
- Azienda ULSS 2 Marca Trevigiana Ospedale Ca' Foncello, Treviso, Italy
| | - Daniela Onofrillo
- UOC di Ematologia, Dipartimento di Oncologia Ematologia, Ospedale Santo Spirito, Pescara, Italy
| | - Ernesta Audisio
- Hematology Unit, Presidio Ospedaliero Molinette, A.O.U. Città della Salute e Della Scienza, Turin, Italy
| | - Giovanni Marconi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, FC, Italy
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Therapies that target the immune system are increasingly used across oncology, including in hematologic malignancies such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). While allogeneic transplant has been a key therapy in these cancers, new approaches that target the immune system are being explored including immune checkpoint therapies, antibody-drug conjugates, and cellular therapies. RECENT FINDINGS This review outlines updates in the preclinical rationale for immune directed therapies in MDS and AML, as well as recent clinical trials exploring these therapies. This manuscript summarizes the development of therapies targeting T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) and CD47, which are being evaluated in late phase studies in MDS and AML. It also reviews the landscape of other immune based therapies including antibody-drug conjugates, chimeric antigen receptor-T cells, bispecific antibodies, and tumor vaccines. SUMMARY The treatment landscape in MDS and AML is rapidly changing; with a goal of improving the quality and duration of responses, a number of immune based therapies are under investigation. This review outlines recent advances with these therapies as well as some of the challenges that remain to incorporate them into leukemia care.
Collapse
Affiliation(s)
- Andrew M Brunner
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Bazinet A, Kantarjian HM. Moving toward individualized target-based therapies in acute myeloid leukemia. Ann Oncol 2023; 34:141-151. [PMID: 36423744 DOI: 10.1016/j.annonc.2022.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease at the genetic level. The field of AML therapy is increasingly shifting away from uniform approaches based solely on intensive chemotherapy (such as '7 + 3') toward personalized therapy. The treatment of AML can now be individualized based on patient characteristics and cytogenetic/molecular disease features. In this review, we provide a comprehensive updated summary of personalized, target-directed therapy in AML. We first discuss the selection of intensive versus low-intensity treatment approaches based on the patient's age and/or comorbidities. We follow with a detailed review of specific molecularly defined AML subtypes that benefit from the addition of targeted agents. In this context, we highlight the urgent need for novel therapies in tumor protein p53 (TP53)-mutated AML. We then propose approaches to optimize AML therapy in patients without directly actionable mutations. We conclude with a discussion on the emerging role of using measurable residual disease to modify therapy based on the quality of response.
Collapse
Affiliation(s)
- A Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
4
|
Morse JW, Rios M, Ye J, Rios A, Zhang CC, Daver NG, DiNardo CD, Zhang N, An Z. Antibody therapies for the treatment of acute myeloid leukemia: exploring current and emerging therapeutic targets. Expert Opin Investig Drugs 2023; 32:107-125. [PMID: 36762937 PMCID: PMC10031751 DOI: 10.1080/13543784.2023.2179482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most common and deadly type of leukemia affecting adults. It is typically managed with rounds of non-targeted chemotherapy followed by hematopoietic stem cell transplants, but this is only possible in patients who can tolerate these harsh treatments and many are elderly and frail. With the identification of novel tumor-specific cell surface receptors, there is great conviction that targeted antibody therapies will soon become available for these patients. AREAS COVERED In this review, we describe the current landscape of known target receptors for monospecific and bispecific antibody-based therapeutics for AML. Here, we characterize each of the receptors and targeted antibody-based therapeutics in development, illustrating the rational design behind each therapeutic compound. We then discuss the bispecific antibodies in development and how they improve immune surveillance of AML. For each therapeutic, we also summarize the available pre-clinical and clinical data, including data from discontinued trials. EXPERT OPINION One antibody-based therapeutic has already been approved for AML treatment, the CD33-targeting antibody-drug conjugate, gemtuzumab ozogamicin. Many more are currently in pre-clinical and clinical studies. These antibody-based therapeutics can perform tumor-specific, elaborate cytotoxic functions and there is growing confidence they will soon lead to personalized, safe AML treatment options that induce durable remissions.
Collapse
Affiliation(s)
- Joshua W Morse
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Margarita Rios
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - John Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Adan Rios
- Division of Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Antibody-Drug Conjugates in Myeloid Leukemias. Cancer J 2022; 28:454-461. [DOI: 10.1097/ppo.0000000000000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Ravaioli F, Marconi G, Martinelli G, Dajti E, Sartor C, Abbenante MC, Alemanni LV, Nanni J, Rossini B, Parisi S, Colecchia L, Cristiano G, Marasco G, Vestito A, Paolini S, Bonifazi F, Curti A, Festi D, Cavo M, Colecchia A, Papayannidis C. Assessment of liver stiffness measurement and ultrasound findings change during inotuzumab ozogamicin cycles for relapsed or refractory acute lymphoblastic leukemia. Cancer Med 2021; 11:618-629. [PMID: 34970853 PMCID: PMC8817094 DOI: 10.1002/cam4.4390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
In adult patients, acute lymphoblastic leukemia (ALL) is a rare hematological cancer with a cure rate below 50% and frequent relapses. With traditional therapies, patients with relapsed or refractory (R/R) ALL have a survival that may be measured in months; in these patients, inotuzumab ozogamicin (IO) is an effective therapy. IO was linked to increased risk of veno-occlusive disease/sinusoid obstruction syndrome (VOD/SOS), liver injury, and various grade of liver-related complications during clinical trials and real-life settings; however, hepatologic monitoring protocol is not established in this population. In our institution, 21 patients who received IO (median of 6 doses of IO administered) for R/R ALL were prospectively followed for hepatologic surveillance, including clinical evaluation, ultrasonography, and liver stiffness measurement (LSM) biochemistry. After a median follow-up of 17.2 months, two SOS events were reported (both after allogeneic transplant) as IO potentially related clinically relevant adverse event. Mild alterations were reported in almost the totality of patients and moderate-severe liver biochemical alterations in a quarter of patients. Within biochemicals value, AST and ALP showed an augment related to IO administration. LSM linearly augmented for each IO course administered. Baseline LSM was related to liver-related changes, especially with the severity of portal hypertension (PH)-related complications. Pre-transplant LSM was higher in patients receiving IO when compared with a control cohort. PH-related complications were discovered in nearly 77% of patients, with clinically significant PH occurrence and development of ascites in 38% and 14%, respectively. This prospective experience constitutes the rationale to design a hepatologic monitoring program in patients receiving IO. LSM may be of pivotal importance in this program, constituting a rapid and effective screening that quantitatively correlates with liver alterations.
Collapse
Affiliation(s)
- Federico Ravaioli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Giovanni Marconi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy.,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elton Dajti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Chiara Sartor
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Maria Chiara Abbenante
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Luigina Vanessa Alemanni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Jacopo Nanni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Benedetta Rossini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Luigi Colecchia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Gianluca Cristiano
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Amanda Vestito
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Francesca Bonifazi
- Programma Dipartimentale di Terapie Cellulari Avanzate, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Davide Festi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy.,IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy
| |
Collapse
|
7
|
Sigal DS, Hermel DJ, Hsu P, Pearce T. The role of Globo H and SSEA-4 in the development and progression of cancer, and their potential as therapeutic targets. Future Oncol 2021; 18:117-134. [PMID: 34734786 DOI: 10.2217/fon-2021-1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glycans, chains of sugar molecules found conjugated to cell proteins and lipids, contribute to their growth, movement and differentiation. Aberrant glycosylation is a hallmark of several medical conditions including tumorigenesis. Glycosphingolipids (GSLs), consisting of glycans conjugated to a lipid (ceramide) core, are found in the lipid bilayer of eukaryotic cell membranes. GSLs, play an active role in cell processes. Several GSLs are expressed by human embryonic stem cells and have been found to be overexpressed in several types of cancer. In this review, we discuss the data, hypotheses and perspectives related to the GSLs Globo H and SSEA-4.
Collapse
Affiliation(s)
- Darren S Sigal
- Director, GI Oncology, Scripps Clinic & Scripps MD Anderson Cancer Center, 10710 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - David J Hermel
- Scripps Clinic & Scripps MD Anderson Cancer Center, 10710 N Torrey Pines Road, LA Jolla, CA 92037, USA
| | - Pei Hsu
- Medical Advisor, Medical Affairs & Clinical Development, OBI Pharma Inc. 7F, No. 369, Zhongxiao E Road, Nangang District, Taipei City, 115, Taiwan
| | - Tillman Pearce
- Chief Medical Officer, OBI Pharma USA Inc., 6020 Cornerstone Court W, Suite 200, San Diego, CA 92121, USA
| |
Collapse
|
8
|
Acharya UH, Walter RB. Chimeric Antigen Receptor (CAR)-Modified Immune Effector Cell Therapy for Acute Myeloid Leukemia (AML). Cancers (Basel) 2020; 12:E3617. [PMID: 33287224 PMCID: PMC7761730 DOI: 10.3390/cancers12123617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the availability of an increasing number of targeted therapeutics and wider use of allogeneic hematopoietic stem cell transplantation, many patients with acute myeloid leukemia (AML) ultimately succumb to this disease. Given their remarkable efficacy in B-acute lymphoblastic leukemia and other CD19-expressing B cell malignancies, there is hope adoptive cellular transfer, particularly chimeric antigen receptor (CAR)-modified immune effector cell (IEC) therapies, may afford a novel, potent immune-based approach for the treatment of AML that complements or replaces existing ones and improves cure rates. However, it is unclear how best to translate the success of these therapies from B cell malignancies, where use of highly potent immunotherapies is facilitated by identified target antigens with near ubiquitous expression on malignant cells and non-fatal consequences from "on-target, off-tumor cell" toxicities. Herein, we review the current status of CAR-modified IEC therapies for AML, with considerations regarding suitable, relatively leukemia-restricted target antigens, expected toxicities, and interactions of the engineered cells with a profoundly immunosuppressive tumor microenvironment that restricts their therapeutic efficacy. With these challenges in mind, we will discuss possible strategies to improve the cells' potency as well as their therapeutic window for optimal clinical use in AML.
Collapse
Affiliation(s)
- Utkarsh H. Acharya
- Divisions of Hematologic Malignancies & Immune Effector Cell Therapy, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|