1
|
Yoo WS, Kwon LH, Eom Y, Thng ZX, Or C, Nguyen QD, Kim SJ. Cytomegalovirus Corneal Endotheliitis: A Comprehensive Review. Ocul Immunol Inflamm 2024; 32:2228-2237. [PMID: 38417101 DOI: 10.1080/09273948.2024.2320704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
Cytomegalovirus (CMV) anterior uveitis and corneal endotheliitis are the most common ocular diseases caused by CMV infections in immunocompetent patients. The incidence of CMV corneal endotheliitis is relatively high in middle-aged men. CMV corneal endotheliitis presents with mild anterior chamber inflammation, corneal edema, keratic precipitates, and elevated intraocular pressure. It resembles Posner-Schlossman syndrome and Fuchs uveitis because of the elevated intraocular pressure. Without proper diagnosis and treatment, it may progress to bullous keratopathy or glaucoma, necessitating keratoplasty or glaucoma surgery. Therefore, early diagnosis and treatment are important for a good prognosis. Aqueous humor analysis can facilitate the diagnosis of CMV corneal endotheliitis, and early antiviral treatment can decrease the risk of corneal compensation or glaucomatous optic atrophy. In this article, we review the epidemiology, pathogenesis, clinical manifestations, diagnosis, treatment, and prognosis of CMV corneal endotheliitis along with the evidence for early clinical diagnosis and active antiviral treatment.
Collapse
Affiliation(s)
- Woong-Sun Yoo
- Department of Ophthalmology, Gyeongsang National University College of Medicine, and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - Lee-Ha Kwon
- Department of Ophthalmology, Gyeongsang National University College of Medicine, and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Zheng Xian Thng
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - Seong-Jae Kim
- Department of Ophthalmology, Gyeongsang National University College of Medicine, and Gyeongsang National University Hospital, Jinju, Republic of Korea
| |
Collapse
|
2
|
Bandeira TFGS, Marti LC, Rother ET, Correia LR, Machado CM. Use of Specific T Lymphocytes in Treating Cytomegalovirus Infection in Hematopoietic Cell Transplant Recipients: A Systematic Review. Pharmaceutics 2024; 16:1321. [PMID: 39458650 PMCID: PMC11510890 DOI: 10.3390/pharmaceutics16101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Cytomegalovirus (CMV) poses a significant threat to post-hematopoietic cell transplantation (HCT). Control strategies include letermovir prophylaxis or ganciclovir pre-emptive therapy (PET). Without prophylaxis, 65-90% of seropositive recipients develop a clinically significant CMV infection. Due to PET drawbacks, letermovir prophylaxis is preferable, as it reduces CMV-related events and improves overall survival. However, refractory or resistant CMV-CS remains a challenge, with maribavir showing limited efficacy. This systematic review followed the Cochrane Manual and PRISMA guidelines and was registered in PROSPERO. Searches were conducted in PubMed, Scopus, Embase, and Web of Science. Out of 1895 identified records, 614 duplicates were removed, and subsequent screening excluded 1153 studies. Eleven included studies (2012-2024) involved 255 HCT recipients receiving adoptive immunotherapy (AI), primarily CMV-specific T-cell therapy. GvHD occurred in 1.82% of cases. Adverse events occurred in 4.4% of cases, while mild CRS was observed in 1.3% of patients. Efficacy, evaluated in 299 patients across eleven studies, showed an average response rate of 78.2%. CMV-CS recurrence was observed in 24.4% of 213 patients, and death due to CMV was reported in 9.7% of 307 patients across nine studies. Adoptive hCMV-specific T-cell immunotherapy appears to be a safe, effective alternative for refractory CMV-CS in HCT.
Collapse
Affiliation(s)
| | - Luciana C. Marti
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, SP, Brazil; (L.C.M.); (E.T.R.)
| | - Edna T. Rother
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, SP, Brazil; (L.C.M.); (E.T.R.)
| | - Lucas Reis Correia
- PROADI-SUS, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, SP, Brazil;
| | - Clarisse M. Machado
- Laboratório de Virologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-000, SP, Brazil;
| |
Collapse
|
3
|
Büttner JK, Becker S, Fink A, Brinkmann MM, Holtappels R, Reddehase MJ, Lemmermann NA. Direct antigen presentation is the canonical pathway of cytomegalovirus CD8 T-cell priming regulated by balanced immune evasion ensuring a strong antiviral response. Front Immunol 2023; 14:1272166. [PMID: 38149242 PMCID: PMC10749961 DOI: 10.3389/fimmu.2023.1272166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
CD8 T cells are important antiviral effectors in the adaptive immune response to cytomegaloviruses (CMV). Naïve CD8 T cells can be primed by professional antigen-presenting cells (pAPCs) alternatively by "direct antigen presentation" or "antigen cross-presentation". In the case of direct antigen presentation, viral proteins are expressed in infected pAPCs and enter the classical MHC class-I (MHC-I) pathway of antigen processing and presentation of antigenic peptides. In the alternative pathway of antigen cross-presentation, viral antigenic material derived from infected cells of principally any cell type is taken up by uninfected pAPCs and eventually also fed into the MHC class-I pathway. A fundamental difference, which can be used to distinguish between these two mechanisms, is the fact that viral immune evasion proteins that interfere with the cell surface trafficking of peptide-loaded MHC-I (pMHC-I) complexes are absent in cross-presenting uninfected pAPCs. Murine cytomegalovirus (mCMV) models designed to disrupt either of the two presentation pathways revealed that both are possible in principle and can substitute each other. Overall, however, the majority of evidence has led to current opinion favoring cross-presentation as the canonical pathway. To study priming in the normal host genetically competent in both antigen presentation pathways, we took the novel approach of enhancing or inhibiting direct antigen presentation by using recombinant viruses lacking or overexpressing a key mCMV immune evasion protein. Against any prediction, the strongest CD8 T-cell response was elicited under the condition of intermediate direct antigen presentation, as it exists for wild-type virus, whereas the extremes of enhanced or inhibited direct antigen presentation resulted in an identical and weaker response. Our findings are explained by direct antigen presentation combined with a negative feedback regulation exerted by the newly primed antiviral effector CD8 T cells. This insight sheds a completely new light on the acquisition of viral immune evasion genes during virus-host co-evolution.
Collapse
Affiliation(s)
- Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sara Becker
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annette Fink
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Lambert N, El Moussaoui M, Baron F, Maquet P, Darcis G. Virus-Specific T-Cell Therapy for Viral Infections of the Central Nervous System: A Review. Viruses 2023; 15:1510. [PMID: 37515196 PMCID: PMC10383098 DOI: 10.3390/v15071510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Opportunistic viral infections of the central nervous system represent a significant cause of morbidity and mortality among an increasing number of immunocompromised patients. Since antiviral treatments are usually poorly effective, the prognosis generally relies on the ability to achieve timely immune reconstitution. Hence, strategies aimed at reinvigorating antiviral immune activity have recently emerged. Among these, virus-specific T-cells are increasingly perceived as a principled and valuable tool to treat opportunistic viral infections. Here we briefly discuss how to develop and select virus-specific T-cells, then review their main indications in central nervous system infections, including progressive multifocal leukoencephalopathy, CMV infection, and adenovirus infection. We also discuss their potential interest in the treatment of progressive multiple sclerosis, or EBV-associated central nervous system inflammatory disease. We finish with the key future milestones of this promising treatment strategy.
Collapse
Affiliation(s)
- Nicolas Lambert
- Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium
| | - Majdouline El Moussaoui
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, 4000 Liège, Belgium
| | - Frédéric Baron
- Department of Hematology, University Hospital of Liège, 4000 Liège, Belgium
| | - Pierre Maquet
- Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium
| | - Gilles Darcis
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, 4000 Liège, Belgium
| |
Collapse
|
5
|
Rousselière A, Charreau B. Persistent CD8 T Cell Marks Caused by the HCMV Infection in Seropositive Adults: Prevalence of HLA-E-Reactive CD8 T Cells. Cells 2023; 12:cells12060889. [PMID: 36980230 PMCID: PMC10047643 DOI: 10.3390/cells12060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the frequency and peptide specificity of long-lasting HCMV-specific CD8 T cells in a cohort of 120 cytomegalovirus seropositive (HCMV+) healthy carriers with the aim of deciphering the relative contribution of unconventional HLA-E- versus conventional HLA-A2-specific CD8 T cells to long-term T cell memory expansion in HCMV immunity. The presence of HCMV-specific CD8 T cells was investigated by flow cytometry using five MHC/peptide tetramer complexes (HLA-A2/pp65, HLA-A2/IE1 and three different HLA-E/UL40). Here, we report that 50% of HCMV+ healthy individuals possess HCMV-specific CD8 T cells, representing ≥0.1% of total blood CD8 T cells years post-infection. Around a third (30.8%) of individuals possess HLA-A2-restricted (A2pp65 or A2IE1) and an equal proportion (27.5%) possess an HLA-E/UL40 CD8 T response. Concomitant HLA-E- and HLA-A2-reactive CD8 T cells were frequently found, and VMAPRTLIL peptide was the major target. The frequency of HLA-E/VMAPRTLIL among total blood CD8 T cells was significantly higher than the frequency of HLA-A2pp65 T cells (mean values: 5.9% versus 2.3%, p = 0.0354). HLA-EUL40 CD8 T cells display lower TCR avidity but similar levels of CD3 and CD8 coreceptors. In conclusion, HLA-E-restricted CD8 T cells against the VMAPRTLIL UL40 peptide constitute a predominant subset among long-lasting anti-HCMV CD8 T cells.
Collapse
Affiliation(s)
- Amélie Rousselière
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
| | - Béatrice Charreau
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CEDEX 1, 44093 Nantes, France
- Correspondence:
| |
Collapse
|
6
|
Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections. Trop Med Infect Dis 2022; 7:tropicalmed7120439. [PMID: 36548694 PMCID: PMC9784992 DOI: 10.3390/tropicalmed7120439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitous worldwide and elicits global health problems. The diseases associated with HCMV are a serious threat to humans, especially for the sick, infant, elderly and immunocompromised/immunodeficient individuals. Although traditional antiviral drugs (e.g., ganciclovir, valganciclovir, cidofovir, foscarnet) can be used to treat or prevent acute HCMV infections, their efficacy is limited because of toxicity, resistance issues, side effects and other problems. Fortunately, novel drugs (e.g., letermovir and maribavir) with less toxicity and drug/cross-resistance have been approved and put on the market in recent years. The nucleic acid-based gene-targeting approaches including the external guide sequences (EGSs)-RNase, the clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPRs-associated protein 9 (Cas9) system and transcription activator-like effector nucleases (TALENs) have been investigated to remove both lytic and latent CMV in vitro and/or in vivo. Cell therapy including the adoptive T cell therapy (ACT) and immunotherapy have been tried against drug-resistant and recurrent HCMV in patients receiving hematopoietic stem cell transplantation (HSCT) or solid organ transplant (SOT), and they have also been used to treat glioblastoma (GBM) associated with HCMV infections. These newly developed antiviral strategies are expected to yield fruitful results and make a significant contribution to the treatment of HCMV infections. Despite this progress, the nucleic acid-based gene-targeting approaches are still under study for basic research, and cell therapy is adopted in a small study population size or only successful in case reports. Additionally, no current drugs have been approved to be indicated for latent infections. Therefore, the next strategy is to develop antiviral strategies to elevate efficacy against acute and/or latent infections and overcome challenges such as toxicity, resistance issues, and side effects. In this review, we would explore the challenges, recent advances and perspectives in the treatment of HCMV infections. Furthermore, the suitable therapeutic strategies as well as the possibility for compassionate use would be evaluated.
Collapse
|
7
|
Panikkar A, Lineburg KE, Raju J, Chew KY, Ambalathingal GR, Rehan S, Swaminathan S, Crooks P, Le Texier L, Beagley L, Best S, Solomon M, Matthews KK, Srihari S, Neller MA, Short KR, Khanna R, Smith C. SARS-CoV-2-specific T cells generated for adoptive immunotherapy are capable of recognizing multiple SARS-CoV-2 variants. PLoS Pathog 2022; 18:e1010339. [PMID: 35157735 PMCID: PMC8880869 DOI: 10.1371/journal.ppat.1010339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/25/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Adoptive T-cell immunotherapy has provided promising results in the treatment of viral complications in humans, particularly in the context of immunocompromised patients who have exhausted all other clinical options. The capacity to expand T cells from healthy immune individuals is providing a new approach to anti-viral immunotherapy, offering rapid off-the-shelf treatment with tailor-made human leukocyte antigen (HLA)-matched T cells. While most of this research has focused on the treatment of latent viral infections, emerging evidence that SARS-CoV-2-specific T cells play an important role in protection against COVID-19 suggests that the transfer of HLA-matched allogeneic off-the-shelf virus-specific T cells could provide a treatment option for patients with active COVID-19 or at risk of developing COVID-19. We initially screened 60 convalescent individuals and based on HLA typing and T-cell response profile, 12 individuals were selected for the development of a SARS-CoV-2-specific T-cell bank. We demonstrate that these T cells are specific for up to four SARS-CoV-2 antigens presented by a broad range of both HLA class I and class II alleles. These T cells show consistent functional and phenotypic properties, display cytotoxic potential against HLA-matched targets and can recognize HLA-matched cells infected with different SARS-CoV-2 variants. These observations demonstrate a robust approach for the production of SARS-CoV-2-specific T cells and provide the impetus for the development of a T-cell repository for clinical assessment. Since the emergence of SARS-CoV-2 variants that reduce the effectiveness of vaccines, it is evident that other interventional strategies will be needed to treat COVID-19, particularly in patients with a compromised immune system who are at an increased risk of developing severe COVID-19. Off-the-shelf T-cell immunotherapy is proving to be a powerful tool to treat viral disease in patients with a compromised immune system. Here, we report here that a small number of SARS-CoV-2 exposed individuals can be used generate a bank of specific T cells that provide broad population coverage. Importantly, we demonstrate that most of the epitopes recognized by these T cells remain unchanged in different variants and that the T cells can recognize cells infected with three different variants of SARS-CoV-2. We believe these observations provide critical proof-of-concept that T-cell based immunotherapy may offer an option for the future treatment of immunocompromised patients who remain susceptible to the severe complications associated with COVID-19.
Collapse
Affiliation(s)
- Archana Panikkar
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katie E. Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jyothy Raju
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - George R. Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Srividhya Swaminathan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laetitia Le Texier
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Leone Beagley
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon Best
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew Solomon
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katherine K. Matthews
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sriganesh Srihari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michelle A. Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|