1
|
Montoya M, Collins SA, Chuntova P, Patel TS, Nejo T, Yamamichi A, Kasahara N, Okada H. Interferon regulatory factor 8-driven reprogramming of the immune microenvironment enhances antitumor adaptive immunity and reduces immunosuppression in murine glioblastoma. Neuro Oncol 2024; 26:2272-2287. [PMID: 39115195 PMCID: PMC11630541 DOI: 10.1093/neuonc/noae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells and thereby restore T-cell responses. METHODS Effects of RRV-IRF8 on survival and tumor growth kinetics were examined in the SB28 murine GBM model. The immunophenotype was analyzed by flow cytometry and gene expression assays. We assayed functional immunosuppression and antigen presentation by ex vivo T-cell-myeloid co-culture. RESULTS Intratumoral injection of RRV-IRF8 in mice bearing intracerebral SB28 glioma significantly suppressed tumor growth and prolonged survival. RRV-IRF8 treated tumors exhibited significant enrichment of cDC1s and CD8+ T-cells. Additionally, myeloid cells derived from RRV-IRF8 tumors showed decreased expression of the immunosuppressive markers Arg1 and IDO1 and demonstrated reduced suppression of naïve T-cell proliferation in ex vivo co-culture, compared to controls. Furthermore, DCs from RRV-IRF8 tumors showed increased antigen presentation compared to those from control tumors. In vivo treatment with azidothymidine (AZT), a viral replication inhibitor, showed that IRF8 transduction in both tumor and non-tumor cells is necessary for survival benefit, associated with a reprogrammed, cDC1- and CD8 T-cell-enriched TIME. CONCLUSIONS Our results indicate that reprogramming of glioma-infiltrating myeloid cells by in vivo expression of IRF8 may reduce immunosuppression and enhance antigen presentation, achieving improved tumor control.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sara A Collins
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Pavlina Chuntova
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Trishna S Patel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
2
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Niwa H, Nakamura T, Kushiya H, Kuraya T, Inoko K, Inagaki A, Suzuki T, Sasaki K, Tsuchikawa T, Hiraoka K, Shichinohe T, Hatanaka Y, Jolly DJ, Kasahara N, Hirano S. Therapeutic activity of retroviral replicating vector-mediated gene therapy in combination with anti-PD-1 antibody in a murine pancreatic cancer model. Cancer Gene Ther 2024; 31:1390-1401. [PMID: 39039195 DOI: 10.1038/s41417-024-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Toca 511, a tumor-selective retroviral replicating vector encoding the yeast cytosine deaminase (yCD) gene, exerts direct antitumor effects through intratumoral prodrug 5-fluorocytosine (5-FC) conversion to active drug 5-fluorouracil by yCD, and has demonstrated therapeutic efficacy in preclinical and clinical trials of various cancers. Toca 511/5-FC treatment may also induce antitumor immunity. Here, we first examined antitumor immune responses activated by Toca 511/5-FC treatment in an immunocompetent murine pancreatic cancer model. We then evaluated the therapeutic effects achieved in combination with anti-programmed cell death protein 1 antibody. In the bilateral subcutaneous tumor model, as compared with the control group, enhanced CD8+ T-cell-mediated cytotoxicity and increased T-cell infiltration in Toca 511-untransduced contralateral tumors were observed. Furthermore, the expression levels of T-cell co-inhibitory receptors on CD8+ T-cells increased during treatment. In the bilateral subcutaneous tumor model, combination therapy showed significantly stronger tumor growth inhibition than that achieved with either monotherapy. In an orthotopic tumor and peritoneal dissemination model, the combination therapy resulted in complete regression in both transduced orthotopic tumors and untransduced peritoneal dissemination. Thus, Toca 511/5-FC treatment induced a systemic antitumor immune response, and the combination therapy could be a promising clinical strategy for treating metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Hiroki Niwa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan.
| | - Hiroki Kushiya
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Tomotaka Kuraya
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Kazuho Inoko
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Akihito Inagaki
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Tomohiro Suzuki
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Katsunori Sasaki
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Kei Hiraoka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
- Department of Clinical Research, NHO Hakodate National Hospital, Hakodate, Hokkaido, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics (C-DAD), Hokkaido University Hospital, Sapporo, Japan
| | - Douglas J Jolly
- Tocagen Inc., San Diego, CA, USA
- Abintus Bio Inc., San Diego, CA, USA
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Montoya M, Collins SA, Chuntova P, Patel TS, Nejo T, Yamamichi A, Kasahara N, Okada H. IRF8-driven reprogramming of the immune microenvironment enhances anti-tumor adaptive immunity and reduces immunosuppression in murine glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587608. [PMID: 38617245 PMCID: PMC11014587 DOI: 10.1101/2024.04.02.587608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells (APCs) and thereby restore T-cell responses. Methods Effects of RRV-IRF8 on survival and tumor growth kinetics were examined in the SB28 murine GBM model. Immunophenotype was analyzed by flow cytometry and gene expression assays. We assayed functional immunosuppression and antigen presentation by ex vivo T-cell-myeloid co-culture. Results Mice with RRV-IRF8 pre-transduced intracerebral tumors had significantly longer survival and slower tumor growth compared to controls. RRV-IRF8 treated tumors exhibited significant enrichment of cDC1s and CD8+ T-cells. Additionally, myeloid cells derived from RRV-IRF8 tumors showed decreased expression of the immunosuppressive markers Arg1 and IDO1 and demonstrated reduced suppression of naïve T-cell proliferation in ex vivo co-culture, compared to controls. Furthermore, DCs from RRV-IRF8 tumors showed increased antigen presentation compared to those from control tumors. In vivo treatment with azidothymidine (AZT), a viral replication inhibitor, showed that IRF8 transduction in both tumor and non-tumor cells is necessary for survival benefit, associated with a reprogrammed, cDC1- and CD8 T-cell-enriched TIME. Conclusions Our results indicate that reprogramming of glioma-infiltrating myeloid cells by in vivo expression of IRF8 may reduce immunosuppression and enhance antigen presentation, achieving improved tumor control.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Sara A Collins
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Pavlina Chuntova
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Trishna S Patel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Takahide Nejo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; The Parker Institute for Cancer Immunotherapy
| |
Collapse
|
6
|
Sonoda-Fukuda E, Takeuchi Y, Ogawa N, Noguchi S, Takarada T, Kasahara N, Kubo S. Targeted Suicide Gene Therapy with Retroviral Replicating Vectors for Experimental Canine Cancers. Int J Mol Sci 2024; 25:2657. [PMID: 38473904 DOI: 10.3390/ijms25052657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer in dogs has increased in recent years and is a leading cause of death. We have developed a retroviral replicating vector (RRV) that specifically targets cancer cells for infection and replication. RRV carrying a suicide gene induced synchronized killing of cancer cells when administered with a prodrug after infection. In this study, we evaluated two distinct RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV) in canine tumor models both in vitro and in vivo. Despite low infection rates in normal canine cells, both RRVs efficiently infected and replicated within all the canine tumor cells tested. The efficient intratumoral spread of the RRVs after their intratumoral injection was also demonstrated in nude mouse models of subcutaneous canine tumor xenografts. When both RRVs encoded a yeast cytosine deaminase suicide gene, which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil, they caused tumor-cell-specific 5-FC-induced killing of the canine tumor cells in vitro. Furthermore, in the AZACF- and AZACH-cell subcutaneous tumor xenograft models, both RRVs exerted significant antitumor effects. These results suggest that RRV-mediated suicide gene therapy is a novel therapeutic approach to canine cancers.
Collapse
Affiliation(s)
- Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Yuya Takeuchi
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Nao Ogawa
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| |
Collapse
|
7
|
Fujino H, Sonoda-Fukuda E, Isoda L, Kawabe A, Takarada T, Kasahara N, Kubo S. Retroviral Replicating Vectors Mediated Prodrug Activator Gene Therapy in a Gastric Cancer Model. Int J Mol Sci 2023; 24:14823. [PMID: 37834271 PMCID: PMC10573151 DOI: 10.3390/ijms241914823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Retroviral replicating vectors (RRVs) selectively replicate and can specifically introduce prodrug-activating genes into tumor cells, whereby subsequent prodrug administration induces the death of the infected tumor cells. We assessed the ability of two distinct RRVs generated from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), which infect cells via type-III sodium-dependent phosphate transporters, PiT-2 and PiT-1, respectively, to infect human gastric cancer (GC) cells. A quantitative RT-PCR showed that all tested GC cell lines had higher expression levels of PiT-2 than PiT-1. Accordingly, AMLV, encoding a green fluorescent protein gene, infected and replicated more efficiently than GALV in most GC cell lines, whereas both RRVs had a low infection rate in human fibroblasts. RRV encoding a cytosine deaminase prodrug activator gene, which converts the prodrug 5-flucytosine (5-FC) to the active drug 5-fluorouracil, showed that AMLV promoted superior 5-FC-induced cytotoxicity compared with GALV, which correlated with the viral receptor expression level and viral spread. In MKN-74 subcutaneous xenograft models, AMLV had significant antitumor effects compared with GALV. Furthermore, in the MKN-74 recurrent tumor model in which 5-FC was discontinued, the resumption of 5-FC administration reduced the tumor volume. Thus, RRV-mediated prodrug activator gene therapy might be beneficial for treating human GC.
Collapse
Affiliation(s)
- Hiroaki Fujino
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
| | - Lisa Isoda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ayane Kawabe
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Hyogo 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA;
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
| |
Collapse
|
8
|
Nowak I, Madej M, Secemska J, Sarna R, Strzalka-Mrozik B. Virus-Based Biological Systems as Next-Generation Carriers for the Therapy of Central Nervous System Diseases. Pharmaceutics 2023; 15:1931. [PMID: 37514117 PMCID: PMC10384784 DOI: 10.3390/pharmaceutics15071931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Central nervous system (CNS) diseases are currently a major challenge in medicine. One reason is the presence of the blood-brain barrier, which is a significant limitation for currently used medicinal substances that are characterized by a high molecular weight and a short half-life. Despite the application of nanotechnology, there is still the problem of targeting and the occurrence of systemic toxicity. Viral vectors and virus-like particles (VLPs) may provide a promising solution to these challenges. Their small size, biocompatibility, ability to carry medicinal substances, and specific targeting of neural cells make them useful in research when formulating a new generation of biological carriers. Additionally, the possibility of genetic modification has the potential for gene therapy. Among the most promising viral vectors are adeno-associated viruses, adenoviruses, and retroviruses. This is due to their natural tropism to neural cells, as well as the possibility of genetic and surface modification. Moreover, VLPs that are devoid of infectious genetic material in favor of increasing capacity are also leading the way for research on new drug delivery systems. The aim of this study is to review the most recent reports on the use of viral vectors and VLPs in the treatment of selected CNS diseases.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Julia Secemska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Robert Sarna
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Webb MJ, Sener U, Vile RG. Current Status and Challenges of Oncolytic Virotherapy for the Treatment of Glioblastoma. Pharmaceuticals (Basel) 2023; 16:793. [PMID: 37375742 PMCID: PMC10301268 DOI: 10.3390/ph16060793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Despite decades of research and numerous clinical trials, the prognosis of patients diagnosed with glioblastoma (GBM) remains dire with median observed survival at 8 months. There is a critical need for novel treatments for GBM, which is the most common malignant primary brain tumor. Major advances in cancer therapeutics such as immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy have not yet led to improved outcomes for GBM. Conventional therapy of surgery followed by chemoradiation with or without tumor treating fields remains the standard of care. One of the many approaches to GBM therapy currently being explored is viral therapies. These typically work by selectively lysing target neoplastic cells, called oncolysis, or by the targeted delivery of a therapeutic transgene via a viral vector. In this review, we discuss the underlying mechanisms of action and describe both recent and current human clinical trials using these viruses with an emphasis on promising viral therapeutics that may ultimately break the field's current stagnant paradigm.
Collapse
Affiliation(s)
- Mason J. Webb
- Department of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| |
Collapse
|
10
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Retroviral Replicating Vector Toca 511 ( Vocimagene Amiretrorepvec) for Prodrug Activator Gene Therapy of Lung Cancer. Cancers (Basel) 2022; 14:cancers14235820. [PMID: 36497300 PMCID: PMC9736610 DOI: 10.3390/cancers14235820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Therapeutic efficacy of retroviral replicating vector (RRV)-mediated prodrug activator gene therapy has been demonstrated in a variety of tumor models, but clinical investigation of this approach has so far been restricted to glioma and gastrointestinal malignancies. In the present study, we evaluated replication kinetics, transduction efficiency, and therapeutic efficacy of RRV in experimental models of lung cancer. RRV delivering GFP as a reporter gene showed rapid viral replication in a panel of lung cancer cells in vitro, as well as robust intratumoral replication and high levels of tumor transduction in subcutaneous and orthotopic pleural dissemination models of lung cancer in vivo. Toca 511 (vocimagene amiretrorepvec), a clinical-stage RRV encoding optimized yeast cytosine deaminase (yCD) which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil (5-FU), showed potent cytotoxicity in lung cancer cells upon exposure to 5-FC prodrug. In vivo, Toca 511 achieved significant tumor growth inhibition following 5-FC treatment in subcutaneous and orthotopic pleural dissemination models of lung cancer in both immunodeficient and immunocompetent hosts, resulting in significantly increased overall survival. This study demonstrates that RRV can serve as highly efficient vehicles for gene delivery to lung cancer, and indicates the translational potential of RRV-mediated prodrug activator gene therapy with Toca 511/5-FC as a novel therapeutic strategy for pulmonary malignancies.
Collapse
|
12
|
Sener U, Ruff MW, Campian JL. Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives. Int J Mol Sci 2022; 23:7046. [PMID: 35806051 PMCID: PMC9266573 DOI: 10.3390/ijms23137046] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Despite multimodality treatment with surgical resection, radiation therapy, chemotherapy, and tumor treating fields, recurrence is universal, median observed survival is low at 8 months and 5-year overall survival is poor at 7%. Immunotherapy aims to generate a tumor-specific immune response to selectively eliminate tumor cells. In treatment of GBM, immunotherapy approaches including use of checkpoint inhibitors, chimeric antigen receptor (CAR) T-Cell therapy, vaccine-based approaches, viral vector therapies, and cytokine-based treatment has been studied. While there have been no major breakthroughs to date and broad implementation of immunotherapy for GBM remains elusive, multiple studies are underway. In this review, we discuss immunotherapy approaches to GBM with an emphasis on molecularly informed approaches.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
13
|
Alekseenko IV, Pleshkan VV, Kuzmich AI, Kondratieva SA, Sverdlov ED. Gene-Immune Therapy of Cancer: Approaches and Problems. RUSS J GENET+ 2022; 58:491-506. [DOI: 10.1134/s1022795422040020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2025]
|
14
|
Naik S, Russell L. The 13 th International Oncolytic Virus Conference: Powerful payloads gain clinical momentum. Mol Ther 2022; 30:1361-1363. [PMID: 35349786 PMCID: PMC9077475 DOI: 10.1016/j.ymthe.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Vyriad, Inc., Rochester, MN, USA.
| | | |
Collapse
|
15
|
Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021; 22:ijms22179376. [PMID: 34502287 PMCID: PMC8430744 DOI: 10.3390/ijms22179376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM–CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM–CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT–GM–CSF–danger signal system by means of artificial cancer specific promoters or a modified delivery system.
Collapse
Affiliation(s)
- Irina Alekseenko
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: (I.A.); (E.S.)
| | - Alexey Kuzmich
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Sofia Kondratieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Victor Pleshkan
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Correspondence: (I.A.); (E.S.)
| |
Collapse
|