1
|
Wang H, de Lucio M, Hu T, Leng Y, Gomez H. A MPET 2-mPBPK model for subcutaneous injection of biotherapeutics with different molecular weights: From local scale to whole-body scale. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 260:108543. [PMID: 39671822 DOI: 10.1016/j.cmpb.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Subcutaneous injection of biotherapeutics has attracted considerable attention in the pharmaceutical industry. However, there is limited understanding of the mechanisms underlying the absorption of drugs with different molecular weights and the delivery of drugs from the injection site to the targeted tissue. METHODS We propose the MPET2-mPBPK model to address this issue. This multiscale model couples the MPET2 model, which describes subcutaneous injection at the local tissue scale from a biomechanical view, with a post-injection absorption model at injection site and a minimal physiologically-based pharmacokinetic (mPBPK) model at whole-body scale. Utilizing the principles of tissue biomechanics and fluid dynamics, the local MPET2 model provides solutions that account for tissue deformation and drug absorption in local blood vessels and initial lymphatic vessels during injection. Additionally, we introduce a model accounting for the molecular weight effect on the absorption by blood vessels, and a nonlinear model accounting for the absorption in lymphatic vessels. The post-injection model predicts drug absorption in local blood vessels and initial lymphatic vessels, which are integrated into the whole-body mPBPK model to describe the pharmacokinetic behaviors of the absorbed drug in the circulatory and lymphatic system. RESULTS We establish a numerical model which links the biomechanical process of subcutaneous injection at local tissue scale and the pharmacokinetic behaviors of injected biotherapeutics at whole-body scale. With the help of the model, we propose an explicit relationship between the reflection coefficient and the molecular weight and predict the bioavalibility of biotherapeutics with varying molecular weights via subcutaneous injection. CONCLUSION The considered drug absorption mechanisms enable us to study the differences in local drug absorption and whole-body drug distribution with varying molecular weights. This model enhances the understanding of drug absorption mechanisms and transport routes in the circulatory system for drugs of different molecular weights, and holds the potential to facilitate the application of computational modeling to drug formulation.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos NM 87544, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024; 40:1943-1961. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
3
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
4
|
Dampalla CS, Kim Y, Zabiegala A, Howard DJ, Nguyen HN, Madden TK, Thurman HA, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Design of Potent Coronavirus Inhibitors with a 2-Pyrrolidone Scaffold: Biochemical, Crystallographic, and Virological Studies. J Med Chem 2024; 67:11937-11956. [PMID: 38953866 DOI: 10.1021/acs.jmedchem.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Zoonotic coronaviruses are known to produce severe infections in humans and have been the cause of significant morbidity and mortality worldwide. SARS-CoV-2 was the largest and latest contributor of fatal cases, even though MERS-CoV has the highest case-fatality ratio among zoonotic coronaviruses. These infections pose a high risk to public health worldwide warranting efforts for the expeditious discovery of antivirals. Hence, we hereby describe a novel series of inhibitors of coronavirus 3CLpro embodying an N-substituted 2-pyrrolidone scaffold envisaged to exploit favorable interactions with the S3-S4 subsites and connected to an invariant Leu-Gln P2-P1 recognition element. Several inhibitors showed nanomolar antiviral activity in enzyme and cell-based assays, with no significant cytotoxicity. High-resolution crystal structures of inhibitors bound to the 3CLpro were determined to probe and identify the molecular determinants associated with binding, to inform the structure-guided optimization of the inhibitors, and to confirm the mechanism of action of the inhibitors.
Collapse
Affiliation(s)
- Chamandi S Dampalla
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alexandria Zabiegala
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dennis J Howard
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Trent K Madden
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
5
|
Guselnikov SV, Baranov KO, Kulemzin SV, Belovezhets TN, Chikaev AN, Murasheva SV, Volkova OY, Mechetina LV, Najakshin AM, Chikaev NA, Solodkov PP, Sergeeva MV, Smirnov AV, Serova IA, Serov OL, Markhaev AG, Kononova YV, Alekseev AY, Gulyaeva MA, Danilenko DM, Battulin NR, Shestopalov AM, Taranin AV. A potent, broadly neutralizing human monoclonal antibody that efficiently protects hACE2-transgenic mice from infection with the Wuhan, BA.5, and XBB.1.5 SARS-CoV-2 variants. Front Immunol 2024; 15:1442160. [PMID: 39100673 PMCID: PMC11294225 DOI: 10.3389/fimmu.2024.1442160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1. The antibody was identified through sorting the SARS-CoV-1 RBD-stained individual B cells that were isolated from the blood of a vaccinated donor following a breakthrough infection. In vitro, iC1 potently neutralizes pseudoviruses expressing a wide range of SARS-CoV-2 Spike variants, including those of the XBB sublineage. In an hACE2-transgenic mouse model, iC1 provided effective protection against the Wuhan strain of the virus as well as the BA.5 and XBB.1.5 variants. Therefore, iC1 can be considered as a potential component of the broadly neutralizing antibody cocktails resisting the SARS-CoV-2 mutation escape.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- Humans
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- Mice, Transgenic
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Mice
- Antibodies, Viral/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pandemics/prevention & control
- Betacoronavirus/immunology
- Betacoronavirus/genetics
- Broadly Neutralizing Antibodies/immunology
- Disease Models, Animal
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Pneumonia, Viral/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Coronavirus Infections/prevention & control
Collapse
Affiliation(s)
- Sergey V. Guselnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V. Kulemzin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N. Belovezhets
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana V. Murasheva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Y. Volkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ludmila V. Mechetina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander M. Najakshin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolai A. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel P. Solodkov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maria V. Sergeeva
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Alexander V. Smirnov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina A. Serova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg L. Serov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander G. Markhaev
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Yulia V. Kononova
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Y. Alekseev
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Marina A. Gulyaeva
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Daria M. Danilenko
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Nariman R. Battulin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander M. Shestopalov
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Apostolopoulos V, Feehan J, Chavda VP. How do we change our approach to COVID with the changing face of disease? Expert Rev Anti Infect Ther 2024; 22:279-287. [PMID: 38642067 DOI: 10.1080/14787210.2024.2345881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION The emergence of SARS-CoV-2 triggered a global health emergency, causing > 7 million deaths thus far. Limited early knowledge spurred swift research, treatment, and vaccine developments. Implementation of public health measures such as, lockdowns and social distancing, disrupted economies and strained healthcare. Viral mutations highlighted the need for flexible strategies and strong public health infrastructure, with global collaboration crucial for pandemic control. AREAS COVERED (i) Revisiting diagnostic strategies, (ii) adapting to the evolving challenge of the virus, (iii) vaccines against new variants, (iv) vaccine hesitancy in the light of the evolving disease, (v) treatment strategies, (vi) hospital preparedness for changing clinical needs, (vii) global cooperation and data sharing, (viii) economic implications, and (ix) education and awareness- keeping communities informed. EXPERT OPINION The COVID-19 crisis forced unprecedented adaptation, emphasizing public health readiness, global unity, and scientific advancement. Key lessons highlight the importance of adaptability and resilience against uncertainties. As the pandemic evolves into a 'new normal,' ongoing vigilance, improved understanding, and available vaccines and treatments equip us for future challenges. Priorities now include proactive pandemic strategies, early warnings, supported healthcare, public education, and addressing societal disparities for better health resilience and sustainability.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, St Albans, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, St Albans, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
9
|
Hedin W, Bergman P, Akhirunessa M, Söderholm S, Buggert M, Granberg T, Gredmark-Russ S, Smith CIE, Pettke A, Wahren Borgström E. Severe Tick-Borne Encephalitis (TBE) in a Patient with X-Linked Agammaglobulinemia; Treatment with TBE Virus IgG Positive Plasma, Clinical Outcome and T Cell Responses. J Clin Immunol 2024; 44:116. [PMID: 38676861 PMCID: PMC11055791 DOI: 10.1007/s10875-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.
Collapse
Affiliation(s)
- Wilhelm Hedin
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunessa
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Söderholm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Pettke
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Emilie Wahren Borgström
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden.
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Li W, Wang BH, Chen BH, Sun Y, Li L, Xiang WQ, Ali AF, Su LX, Mao HY, Shen HQ, Shu Q. Coinfection of SARS-CoV-2 Omicron variant and other respiratory pathogens in children. World J Pediatr 2024; 20:92-96. [PMID: 37540450 DOI: 10.1007/s12519-023-00744-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Wei Li
- Department of Clinical Laboratory, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Han Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Hai Chen
- Department of Information Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lin Li
- Department of Clinical Laboratory, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen-Qing Xiang
- Department of Clinical Laboratory, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ahmed Faisal Ali
- Department of Clinical Laboratory, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Xuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hai-Yan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hong-Qiang Shen
- Department of Clinical Laboratory, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Reger LN, Saballus M, Kampmann M, Wijffels RH, Martens DE, Niemann J. Triple Space-Time Yield in Discontinuous Antibody Biomanufacturing by Combination of Synergetic Process Intensification Strategies. Bioengineering (Basel) 2023; 10:1391. [PMID: 38135982 PMCID: PMC10740458 DOI: 10.3390/bioengineering10121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Monoclonal antibodies are the workhorse of the pharmaceutical industry due to their potential to treat a variety of different diseases while providing high specificity and efficiency. As a consequence, a variety of production processes have been established within the biomanufacturing industry. However, the rapidly increasing demand for therapeutic molecules amid the recent COVID-19 pandemic demonstrated that there still is a clear need to establish novel, highly productive, and flexible production processes. Within this work, we designed a novel discontinuous process by combining two intensification strategies, thus increasing inoculation density and media exchange via a fluidized bed centrifuge, to fulfill the need for a flexible and highly productive production process for therapeutic molecules. To establish this new process, firstly, a small-scale experiment was conducted to verify synergies between both intensification strategies, followed by a process transfer towards the proof-of-concept scale. The combination of these two-process intensification measures revealed overall synergies resulting in decreased process duration (-37%) and strongly enhanced product formation (+116%) in comparison to the not-intensified standard operation. This led to an impressive threefold increase in space-time yield, while only negligible differences in product quality could be observed. Overall, this novel process not only increases the ways to react to emergency situations thanks to its flexibility and possible short development times, but also represents a possible alternative to the current established processes due to high increases in productivity, in comparison to standard fed-batch operations.
Collapse
Affiliation(s)
- Lucas Nik Reger
- Corporate Research, Sartorius, 37079 Göttingen, Germany; (M.S.); (M.K.)
- Bioprocess Engineering, Wageningen University, 6708 PB Wageningen, The Netherlands; (R.H.W.); (D.E.M.)
| | - Martin Saballus
- Corporate Research, Sartorius, 37079 Göttingen, Germany; (M.S.); (M.K.)
| | - Markus Kampmann
- Corporate Research, Sartorius, 37079 Göttingen, Germany; (M.S.); (M.K.)
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University, 6708 PB Wageningen, The Netherlands; (R.H.W.); (D.E.M.)
| | - Dirk E. Martens
- Bioprocess Engineering, Wageningen University, 6708 PB Wageningen, The Netherlands; (R.H.W.); (D.E.M.)
| | - Julia Niemann
- Corporate Research, Sartorius, 37079 Göttingen, Germany; (M.S.); (M.K.)
| |
Collapse
|
12
|
Davoutis E, Panou C, Stachika N, Dalla C, Kokras N. Drug-drug interactions between COVID-19 drug therapies and antidepressants. Expert Opin Drug Metab Toxicol 2023; 19:937-950. [PMID: 37934891 DOI: 10.1080/17425255.2023.2280750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Antidepressants are widely used for the pharmacological treatment of anxiety and mood disorders. Since the eruption of the SARS-COV-2 pandemic and the later development of targeted treatments against COVID-19, inevitably many patients receive antidepressants as well as targeted treatments against COVID-19 against COVID-19. Co-administration of antidepressants with COVID-19 therapeutics has the potential of drug-drug interactions, of varying severity and clinical significance. AREAS COVERED This is a curated narrative review of the current state of the art regarding drug-drug interactions between COVID-19 therapeutics and medications licensed for the pharmacotherapy of depression. A systematic search of electronic databases, using as keywords the international nonproprietaty names of currently approved COVID-19 therapeutics and antidepressants was performed, and additionally online interaction checker tools were consulted. Derived data were synthesized for each COVID-19 therapeutic and presented with up-to-date guidance. EXPERT OPINION Several COVID-19 therapeutics have potential for drug-drug interactions with antidepressants. Remdesivir and Nirmatrelvir-Ritonavir have the higher risk, whereas several monoclonal antibodies appear safer. The most serious drug-drug interactions (serotonin syndrome and QTc prolongation) require close monitoring; however, DDI toward reducing the efficacy of antidepressants may be difficult to recognize. As COVID-19 treatment protocols take precedence, psychiatrists should exert flexibility in antidepressant use and proactively monitor treatment progress.
Collapse
Affiliation(s)
- Efstathia Davoutis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysa Panou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolina Stachika
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Reus P, Guthmann H, Uhlig N, Agbaria M, Issmail L, Eberlein V, Nordling-David MM, Jbara-Agbaria D, Ciesek S, Bojkova D, Cinatl J, Burger-Kentischer A, Rupp S, Zaliani A, Grunwald T, Gribbon P, Kannt A, Golomb G. Drug repurposing for the treatment of COVID-19: Targeting nafamostat to the lungs by a liposomal delivery system. J Control Release 2023; 364:654-671. [PMID: 37939853 DOI: 10.1016/j.jconrel.2023.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Philipp Reus
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany; Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Hadar Guthmann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Mirjam M Nordling-David
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Denisa Bojkova
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Innovation Center TheraNova, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute for Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Wang H, Hu T, Leng Y, de Lucio M, Gomez H. MPET 2: a multi-network poroelastic and transport theory for predicting absorption of monoclonal antibodies delivered by subcutaneous injection. Drug Deliv 2023; 30:2163003. [PMID: 36625437 PMCID: PMC9851243 DOI: 10.1080/10717544.2022.2163003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,CONTACT Hao Wang School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
15
|
Zhu X, Gong L, Qin Q. Development, methodological evaluation and application of a cell-based TRF assay for analysis of ADCC activity. J Pharm Biomed Anal 2023; 235:115655. [PMID: 37647793 DOI: 10.1016/j.jpba.2023.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Interaction of an antibody with its FcγR plays an important role in effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC). Nowadays altered ADCC activity of an antibody can be achieved by utilizing an effective glyco-engineering strategy, which often involves changes of sugar moieties in Fc part of the antibody, thereby affecting its receptor binding with effector cells. We aimed to construct a cell-based time-resolved fluorescence (TRF) assay for the evaluation of ADCC activity triggered by the antibody drug Trastuzumab (anti-HER2) and T-DM1. The assay was initiated by incubating 2,2':6',2 "-Terpyridine-6,6"-dicarboxylic acid (TDA)-labeled target SK-BR3 cells with the testing antibodies and engineered NK-92 effector cells. After incubation, the target cells were lysed to detect TDA released into the supernatant. Together with added Eu, the TDA in the supernatant formed a stable chelate of EuTDA with high-intensity fluorescence. The ADCC activity was then determined by measuring the fluorescence of EuTDA. Consequently, the method demonstrated good accuracy, precision, linearity, and specificity over methodological assessment and compared well with the Luciferase release assay in terms of the agreement of the achieved results. Using the developed assay, we evaluated the ADCC activity of two glyco-engineered anti-HER-2 antibody-drug conjugates (ADCs) and the results showed that antibody Fc glycosylation modifications influenced antibody ADCC activity to varying degrees. In conclusion, the present assay is able to accurately assess the ADCC activity induced by Trastuzumab (anti-HER2) and T-DM1, and a similar methodology can be applied to other therapeutic antibodies during drug development to help screen for antibodies with desirable ADCC activity.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Likun Gong
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China.
| | - Qiuping Qin
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China.
| |
Collapse
|
16
|
Svoboda P, Haviernik J, Bednar P, Matkovic M, Cervantes Rincón T, Keeffe J, Palus M, Salat J, Agudelo M, Nussenzweig MC, Cavalli A, Robbiani DF, Ruzek D. A combination of two resistance mechanisms is critical for tick-borne encephalitis virus escape from a broadly neutralizing human antibody. Cell Rep 2023; 42:113149. [PMID: 37715951 PMCID: PMC10591882 DOI: 10.1016/j.celrep.2023.113149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that causes human neuroinfections and represents a growing health problem. The human monoclonal antibody T025 targets envelope protein domain III (EDIII) of TBEV and related tick-borne flaviviruses, potently neutralizing TBEV in vitro and in preclinical models, representing a promising candidate for clinical development. We demonstrate that TBEV escape in the presence of T025 or T028 (another EDIII-targeting human monoclonal antibody) results in virus variants of reduced pathogenicity, characterized by distinct sets of amino acid changes in EDII and EDIII that are jointly needed to confer resistance. EDIII substitution K311N impairs formation of a salt bridge critical for T025-epitope interaction. EDII substitution E230K is not on the T025 epitope but likely induces quaternary rearrangements of the virus surface because of repulsion of positively charged residues on the adjacent EDI. A combination of T025 and T028 prevents virus escape and improves neutralization.
Collapse
Affiliation(s)
- Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Jan Haviernik
- Veterinary Research Institute, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Bednar
- Veterinary Research Institute, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Martin Palus
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiri Salat
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Davide F Robbiani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Japan.
| |
Collapse
|
17
|
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023; 15:1916. [PMID: 37514102 PMCID: PMC10385763 DOI: 10.3390/pharmaceutics15071916] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Keshava Jetha
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Ph.D. Section, Gujarat Technological University, Ahmedabad 382424, Gujarat, India
| | | | - Hetvi K Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
18
|
McCarthy MW. Optimizing the use of vilobelimab for the treatment of COVID-19. Expert Opin Biol Ther 2023; 23:877-881. [PMID: 37421632 DOI: 10.1080/14712598.2023.2235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION On 4 April 2023i4 April 2023, the United States Food and Drug Administration issued an emergency use authorization for the use of vilobelimab (GohibicTM) for the treatment of COVID-19 in hospitalized adults when initiated within 48 hours of receiving invasive mechanical ventilation or extracorporeal membrane oxygenation. AREAS COVERED Vilobelimab is a human-mouse chimeric IgG4 kappa antibody that targets human complement component 5a, a part of the immune system that is thought to play an important role in the systemic inflammation due to SARS-CoV-2 infection that leads to COVID-19 disease progression. EXPERT OPINION A pragmatic, adaptive, randomized, multicenter phase II/III study evaluating vilobelimab for the treatment of severe COVID-19 found that patients receiving invasive mechanical ventilation and usual care who were treated with vilobelimab had a lower risk of death by day 28 and day 60 compared to those receiving placebo. This manuscript explores what is known about vilobelimab and explores how this treatment may be used in the future to treat severe COVID-19.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| |
Collapse
|
19
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Zuo Y, Zheng Z, Huang Y, He J, Zang L, Ren T, Cao X, Miao Y, Yuan Y, Liu Y, Ma F, Dai J, Tian S, Ding Q, Zheng H. Vitamin C promotes ACE2 degradation and protects against SARS-CoV-2 infection. EMBO Rep 2023; 24:e56374. [PMID: 36876523 PMCID: PMC10074088 DOI: 10.15252/embr.202256374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
ACE2 is a major receptor for cellular entry of SARS-CoV-2. Despite advances in targeting ACE2 to inhibit SARS-CoV-2 binding, strategies to flexibly and sufficiently reduce ACE2 levels for the prevention of SARS-CoV-2 infection have not been explored. Here, we reveal vitamin C (VitC) administration as a potent strategy to prevent SARS-CoV-2 infection. VitC reduces ACE2 protein levels in a dose-dependent manner, while even a partial reduction in ACE2 levels can greatly inhibit SARS-CoV-2 infection. Further studies reveal that USP50 is a crucial regulator of ACE2 levels. VitC blocks the USP50-ACE2 interaction, thus promoting K48-linked polyubiquitination of ACE2 at Lys788 and subsequent degradation of ACE2 without affecting its transcriptional expression. Importantly, VitC administration reduces host ACE2 levels and greatly blocks SARS-CoV-2 infection in mice. This study reveals that ACE2 protein levels are down-regulated by an essential nutrient, VitC, thereby enhancing protection against infection of SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yibo Zuo
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Zhijin Zheng
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Yingkang Huang
- CAMS Key Laboratory of Synthetic Biology Regulatory ElementsChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Suzhou Institute of Systems MedicineSuzhouChina
| | - Jiuyi He
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Lichao Zang
- The Third Affiliated Hospital of Soochow University, ChangzhouSoochow UniversitySuzhouChina
| | - Tengfei Ren
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Xinhua Cao
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Ying Miao
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Yukang Yuan
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow UniversitySuzhouChina
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory ElementsChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Suzhou Institute of Systems MedicineSuzhouChina
| | - Jianfeng Dai
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow UniversitySuzhouChina
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Beijing Advanced Innovation Center for Structural BiologyTsinghua UniversityBeijingChina
| | - Hui Zheng
- International Institute of Infection and ImmunityInstitutes of Biology and Medical Sciences, Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, Soochow UniversitySuzhouChina
| |
Collapse
|
21
|
Zhaori G, Lu L, Liu C, Han S, Guo Y. Better design leads to better results - Importance of virological outcome design in clinical trials for antiviral treatment of coronavirus disease 2019. Pediatr Investig 2023; 7:1-5. [PMID: 36967738 PMCID: PMC10030700 DOI: 10.1002/ped4.12363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Getu Zhaori
- Editorial OfficePediatric Investigation, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
- Medical Journal CenterBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Lu Lu
- Editorial OfficePediatric Investigation, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
- Medical Journal CenterBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Chunyan Liu
- Editorial OfficePediatric Investigation, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
- Medical Journal CenterBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Shujing Han
- Editorial OfficePediatric Investigation, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
- Medical Journal CenterBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yongli Guo
- Editorial OfficePediatric Investigation, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
- Beijing Key Laboratory for Pediatric Diseases of OtolaryngologyHead and Neck Surgery, MOE Key Laboratory of Major Disease in Children, Beijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| |
Collapse
|
22
|
Tzitzi E, Pyrpasopoulou A, Kalmoukos P, Kefas A, Kyrana Z, Doukelis P, Varouktsi A, Imprialos K, Doumas M. Casivirimab/Imdevimab Effect on COVID-19 Outcome and Reinfection in a Real-World SARS-COV-2 Variant Transition Period Setting. Monoclon Antib Immunodiagn Immunother 2023; 42:48-50. [PMID: 36757301 DOI: 10.1089/mab.2022.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Monoclonal antibodies targeted against SARS-COV-2 have been recruited in the challenging treatment of COVID-19 with few clinically significant side effects. Casivirimab/imdevimab, a combination of monoclonal antibodies targeted against SARS-COV-2 spike protein, was shown to effectively prevent recently infected high-risk COVID-19 patients from developing severe disease. Its efficacy waned with the emergence of the resistant omicron variant in late 2021. We recorded the real-world effect of casivirimab/imdevimab on 116 high-risk COVID-19 patients. Cumulative need for hospitalization, mortality, new-onset disease, and reinfections was monitored. Casivirimab/imdevimab effect was independent from previous immunization. The cohort was further divided into two subgroups: patients infected during a delta variant prevalent period were more likely to become admitted but as likely to die than patients infected with the omicron variant, in support of its protective effect from clinical studies. Cumulative reinfection incidence in treated patients, interestingly, was lower than in the general population.
Collapse
Affiliation(s)
- Evanthia Tzitzi
- COVID Department, Hippokration Hospital Thessaloniki, Thessaloniki, Greece
| | | | | | - Aristeidis Kefas
- COVID Department, Hippokration Hospital Thessaloniki, Thessaloniki, Greece
| | - Zacharenia Kyrana
- COVID Department, Hippokration Hospital Thessaloniki, Thessaloniki, Greece
| | | | - Anna Varouktsi
- COVID Department, Hippokration Hospital Thessaloniki, Thessaloniki, Greece
| | - Kostas Imprialos
- COVID Department, Hippokration Hospital Thessaloniki, Thessaloniki, Greece
| | - Michail Doumas
- COVID Department, Hippokration Hospital Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Venturas JP. HIV and COVID-19 Disease. Semin Respir Crit Care Med 2023; 44:35-49. [PMID: 36646084 DOI: 10.1055/s-0042-1758852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite effective antiretroviral therapy (ART), HIV infected individuals throughout the world remain at significant risk of respiratory infections and non-communicable disease. Severe disease from SARS-CoV-2 is associated with a hyperinflammatory phenotype which manifests in the lungs as pneumonia and in some cases can lead to acute respiratory failure. Progression to severe COVID-19 is associated with comorbid disease such as obesity, diabetes mellitus and cardiovascular disease, however data concerning the associated risks of HIV coinfection are still conflicting, with large population studies demonstrating poorer outcomes, whilst smaller, case-controlled studies showing better outcomes. Furthermore, underlying immunopathological processes within the lungs and elsewhere, including interactions with other opportunistic infections (OI), remain largely undefined. Nonetheless, new and repurposed anti-viral therapies and vaccines which have been developed are safe to use in this population, and anti-inflammatory agents are recommended with the caveat that the coexistence of opportunistic infections is considered and excluded. Finally, HIV infected patients remain reliant on good ART adherence practices to maintain HIV viral suppression, and some of these practices were disrupted during the COVID-19 pandemic, putting these patients at further risk for acute and long-term adverse outcomes.
Collapse
Affiliation(s)
- Jacqui P Venturas
- Department of Internal Medicine and Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital and Universtity of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
A Spike-destructing human antibody effectively neutralizes Omicron-included SARS-CoV-2 variants with therapeutic efficacy. PLoS Pathog 2023; 19:e1011085. [PMID: 36706160 PMCID: PMC9907810 DOI: 10.1371/journal.ppat.1011085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/08/2023] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Neutralizing antibodies (nAbs) are important assets to fight COVID-19, but most existing nAbs lose the activities against Omicron subvariants. Here, we report a human monoclonal antibody (Ab08) isolated from a convalescent patient infected with the prototype strain (Wuhan-Hu-1). Ab08 binds to the receptor-binding domain (RBD) with pico-molar affinity (230 pM), effectively neutralizes SARS-CoV-2 and variants of concern (VOCs) including Alpha, Beta, Gamma, Mu, Omicron BA.1 and BA.2, and to a lesser extent for Delta and Omicron BA.4/BA.5 which bear the L452R mutation. Of medical importance, Ab08 shows therapeutic efficacy in SARS-CoV-2-infected hACE2 mice. X-ray crystallography of the Ab08-RBD complex reveals an antibody footprint largely in the β-strand core and away from the ACE2-binding motif. Negative staining electron-microscopy suggests a neutralizing mechanism through which Ab08 destructs the Spike trimer. Together, our work identifies a nAb with therapeutic potential for COVID-19.
Collapse
|
25
|
Chavda VP, Balar P, Vaghela D, Solanki HK, Vaishnav A, Hala V, Vora L. Omicron Variant of SARS-CoV-2: An Indian Perspective of Vaccination and Management. Vaccines (Basel) 2023; 11:160. [PMID: 36680006 PMCID: PMC9860853 DOI: 10.3390/vaccines11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Omicron variants have highly influenced the entire globe. It has a high rate of transmissibility, which makes its management tedious. There are various subtypes of omicron, namely BA.1, BA.2, BA.3, BA.4, and BA.5. Currently, one omicron subvariant BF.7 is also immersed in some parts of India. Further studies are required for a better understanding of the new immersing SARS-CoV-2 subvariant of the omicron. They differ in the mutation of the spike proteins, which alters their attachment to the host receptor and hence modifies their virulence and adaptability. Delta variants have a great disastrous influence on the entire world, especially in India. While overcoming it, another mutant catches the pace. The Indian population is highly affected by omicron variants. It alters the entire management and diagnosis system against COVID-19. It demanded forcemeat in the health care system, both qualitatively and quantitively, to cope with the omicron wave. The alteration in spike protein, which is the major target of vaccines, leads to varied immunization against the subvariants. The efficacy of vaccines against the new variant was questioned. Every vaccine had a different shielding effect on the new variant. The hesitancy of vaccination was a prevalent factor in India that might have contributed to its outbreak. The prevalence of omicron, monkeypox, and tomato flu shared some similarities and distinct features when compared to their influence on the Indian population. This review emphasizes the changes omicron brings with it and how the Indian health care system outrage this dangerous variant.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Dixa Vaghela
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Hetvi K. Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Akta Vaishnav
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek Hala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
26
|
Amodio E, Genovese D, Fallucca A, Ferro P, Sparacia B, D’Azzo L, Fertitta A, Maida CM, Vitale F. Clinical Severity in Different Waves of SARS-CoV-2 Infection in Sicily: A Model of Smith's "Law of Declining Virulence" from Real-World Data. Viruses 2022; 15:125. [PMID: 36680165 PMCID: PMC9867301 DOI: 10.3390/v15010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The COVID-19 epidemic had a rapid spread worldwide with a continuous and fast mutation of the virus, resulting in the emergence of several variants of concern (VOC). The aim of this study was to evaluate the severity of each VOC among SARS-CoV-2 infected subjects by investigating deaths, ICU admissions, intubations, and severe critical symptoms. METHODS An ecological observational study was performed to evaluate mortality rates and clinical characteristics of 321,490 unvaccinated Sicilian SARS-CoV-2 cases observed from 2 March 2020 to 27 March 2022. Odds ratios (OR) and 95% confidence intervals (CI) were calculated by multivariate logistic regression analysis evaluating factors determining a clinical worsening. RESULTS Delta (adj-OR 3.00, 95% Cls 2.70-3.33) and wild-type (adj-OR 2.41, 95% Cls 2.2-2.62) variants had a higher risk than the Omicron strain for developing critical COVID-19 necessitating intubation and eventually undergoing death. Moreover, males appeared to be significantly more susceptible to developing the worst clinical outcome considered, as did older subjects. CONCLUSIONS The present study provides evidence of factors implicated in the worsening of SARS-CoV-2-infection-related clinical outcomes. The study highlighted the different roles of VOC, in particular Delta and wild-type, and being male and elderly in the development of a worse clinical outcome.
Collapse
Affiliation(s)
| | - Dario Genovese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Morgan MS, Yan K, Le TT, Johnston RA, Amarilla AA, Muller DA, McMillan CLD, Modhiran N, Watterson D, Potter JR, Sng JD, Lor M, Paramitha D, Isaacs A, Khromykh AA, Hall RA, Suhrbier A, Rawle DJ, Hobson-Peters J. Monoclonal Antibodies Specific for SARS-CoV-2 Spike Protein Suitable for Multiple Applications for Current Variants of Concern. Viruses 2022; 15:139. [PMID: 36680179 PMCID: PMC9863740 DOI: 10.3390/v15010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spawned an ongoing demand for new research reagents and interventions. Herein we describe a panel of monoclonal antibodies raised against SARS-CoV-2. One antibody showed excellent utility for immunohistochemistry, clearly staining infected cells in formalin-fixed and paraffin embedded lungs and brains of mice infected with the original and the omicron variants of SARS-CoV-2. We demonstrate the reactivity to multiple variants of concern using ELISAs and describe the use of the antibodies in indirect immunofluorescence assays, Western blots, and rapid antigen tests. Finally, we illustrate the ability of two antibodies to reduce significantly viral tissue titers in K18-hACE2 transgenic mice infected with the original and an omicron isolate of SARS-CoV-2.
Collapse
Affiliation(s)
- Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Thuy T. Le
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Ryan A. Johnston
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
- Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia
| | - Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
- Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - James R. Potter
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Julian D.J. Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mary Lor
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
- Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
- Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
- Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia
| |
Collapse
|
28
|
Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel) 2022; 10:2150. [PMID: 36560560 PMCID: PMC9785933 DOI: 10.3390/vaccines10122150] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19's launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Shailvi Soni
- Massachussets College of Pharmacy and Health Science, 19 Foster Street, Worcester, MA 01608, USA
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shruti Soni
- PharmD Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Avinash Khadela
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Jinal Ajabiya
- Department of Pharmaceutics Analysis and Quality Assurance, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
29
|
Chavda VP, Ping FF, Chen ZS. An Impact of COVID-19 on Cancer Care: An Update. Vaccines (Basel) 2022; 10:2072. [PMID: 36560482 PMCID: PMC9780966 DOI: 10.3390/vaccines10122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The world has been affected socioeconomically for the last two years due to the emergence of different variants of the COVID-19 virus. Vaccination is the major and most efficient way to prevent the widening of this pandemic. Those who are having comorbidities are more vulnerable to serious infections due to their immunocompromised state. Additionally, cancer patients could be at significant risk for COVID-19. In this pandemic era, the diagnosis and treatment of cancer were significantly affected. Clinical trials at the initial stage were performed on healthy or COVID-19 infected patients. This produces a greater level of hesitancy in cancer patients. This review article provide an update regarding the vaccination and treatment for COVID-19 in patients with cancer and future directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Feng-Feng Ping
- Department of Reproductive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA
| |
Collapse
|
30
|
Chavda VP, Patel AB, Vora LK, Singla RK, Shah P, Uversky VN, Apostolopoulos V. Nitric Oxide and its Derivatives Containing Nasal Spray and Inhalation Therapy for the Treatment of COVID-19. Curr Pharm Des 2022; 28:3658-3670. [PMID: 36284382 DOI: 10.2174/1381612829666221024124848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major health concern worldwide and has evolved into different variants. SARS-CoV-2 possesses a spike glycoprotein on its envelope that binds to the angiotensin-converting enzyme 2 (ACE-2) receptor of the host cell via the receptor-binding domain (RBD) in the upper respiratory tract. Since the SARS-CoV-2 virus variants change the severity of the diesease and treatment scenarios, repurposing current medicines may provide a quick and appealing method with established safety features. The efficacy and safety of antiviral medicines against the coronavirus disease 2019 (COVID-19) have been investigated, and several of them are now undergoing clinical studies. Recently, it has been found that nitric oxide (NO) shows antiviral properties against SARS-CoV-2 and prevents the virus from binding to a host cell. In addition, NO is a well-known vasodilator and acts as an important coagulation mediator. With the fast-track development of COVID-19 treatments and vaccines, one avenue of research aimed at improving therapeutics is exploring different forms of drug delivery, including intranasal sprays and inhalation therapy. The nasal mucosa is more prone to be the site of infection as it is in more direct contact with the physical environment via air during inhalation and exhalation. Thus, the use of exogenous nasal NO therapy via the intranasal route displays a distinct advantage. Therefore, the objective of this review is to summarize the relevant actions of NO via the intranasal spray and inhalation delivery, its mechanism of action, and its use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, U.K
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Priyal Shah
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia
| |
Collapse
|
31
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Patel AB, Sharma N, Chen ZS. Recent review of COVID-19 management: diagnosis, treatment and vaccination. Pharmacol Rep 2022; 74:1120-1148. [PMID: 36214969 PMCID: PMC9549062 DOI: 10.1007/s43440-022-00425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
The idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached global proportions; the World Health Organization (WHO) declared it as a public health emergency during the month of January 30, 2020. The major causes of the rise of new variants of SARS-CoV-2 are genetic mutations and recombination. Some of the variants with high infection and transmission rates are termed as variants of concern (VOCs) like currently Omicron variants. Pregnant women, aged people, and immunosuppressed and compromised patients constitute the most susceptible human population to the SARS-CoV-2 infection, especially to the new evolving VOCs. To effectively manage the pathological condition of infection, the focus should be directed towards prevention and prophylactic approach. In this narrative review, we aimed to analyze the current scenario of COVID-19 management and discuss the treatment and prevention strategies. We also focused on the complications prevalent during the COVID-19 and post-COVID period and to discuss the novel approaches developed for mitigation of the global pandemic. We have also emphasized on the COVID-19 management approaches for the special population including children, pregnant women, aged groups, and immunocompromised patients. We conclude that the advancements in therapeutic and pharmacological domains have provided opportunities to develop and design novel diagnosis, treatment, and prevention strategies. New advanced techniques such as RT-LAMP, RT-qPCR, High-Resolution Computed Tomography, etc., efficiently diagnose patients with SARS-CoV-2 infection. In the case of treatment options, new drugs like paxlovid, combinations of β-lactum drugs and molnupiravir are found to be effective against even the new emerging variants. In addition, vaccination is an essential approach to prevent the infection or to reduce its severity. Vaccines for against COVID-19 from Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford-AstraZeneca are approved and used widely. Similarly, numerous vaccines have been developed with different percentages of effectiveness against VOCs. New developments like nanotechnology and AI can be beneficial in providing an efficient and reliable solution for the suppression of SARS-CoV-2. Public health concerns can be efficiently treated by a unified scientific approach, public engagement, and better diagnosis.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
32
|
Chavda VP, Bezbaruah R, Deka K, Nongrang L, Kalita T. The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines (Basel) 2022; 10:1926. [PMID: 36423021 PMCID: PMC9698608 DOI: 10.3390/vaccines10111926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
The world has not yet completely overcome the fear of the havoc brought by SARS-CoV-2. The virus has undergone several mutations since its initial appearance in China in December 2019. Several variations (i.e., B.1.616.1 (Kappa variant), B.1.617.2 (Delta variant), B.1.617.3, and BA.2.75 (Omicron variant)) have emerged throughout the pandemic, altering the virus's capacity to spread, risk profile, and even symptoms. Humanity faces a serious threat as long as the virus keeps adapting and changing its fundamental function to evade the immune system. The Delta variant has two escape alterations, E484Q and L452R, as well as other mutations; the most notable of these is P681R, which is expected to boost infectivity, whereas the Omicron has about 60 mutations with certain deletions and insertions. The Delta variant is 40-60% more contagious in comparison to the Alpha variant. Additionally, the AY.1 lineage, also known as the "Delta plus" variant, surfaced as a result of a mutation in the Delta variant, which was one of the causes of the life-threatening second wave of coronavirus disease 2019 (COVID-19). Nevertheless, the recent Omicron variants represent a reminder that the COVID-19 epidemic is far from ending. The wave has sparked a fervor of investigation on why the variant initially appeared to propagate so much more rapidly than the other three variants of concerns (VOCs), whether it is more threatening in those other ways, and how its type of mutations, which induce minor changes in its proteins, can wreck trouble. This review sheds light on the pathogenicity, mutations, treatments, and impact on the vaccine efficacy of the Delta and Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Kangkan Deka
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Tutumoni Kalita
- Girijananda Chowdhury Institute of Pharmaceutical Science, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
33
|
Esposito R, Mirra D, Sportiello L, Spaziano G, D’Agostino B. Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand? Biomedicines 2022; 10:2815. [PMID: 36359334 PMCID: PMC9687182 DOI: 10.3390/biomedicines10112815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
The vaccine weapon has resulted in being essential in fighting the COVID-19 outbreak, but it is not fully preventing infection due to an alarming spreading of several identified variants of concern. In fact, the recent emergence of variants has pointed out how the SARS-CoV-2 pandemic still represents a global health threat. Moreover, oral antivirals also develop resistance, supporting the need to find new targets as therapeutic tools. However, cocktail therapy is useful to reduce drug resistance and maximize vaccination efficacy. Natural products and metal-drug-based treatments have also shown interesting antiviral activity, representing a valid contribution to counter COVID-19 outbreak. This report summarizes the available evidence which supports the use of approved drugs and further focuses on significant clinical trials that have investigated the safety and efficacy of repurposing drugs and new molecules in different COVID-19 phenotypes. To date, there are many individuals vulnerable to COVID-19 exhibiting severe symptoms, thus characterizing valid therapeutic strategies for better management of the disease is still a challenge.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
34
|
Chavda VP, Yao Q, Vora LK, Apostolopoulos V, Patel CA, Bezbaruah R, Patel AB, Chen ZS. Fast-track development of vaccines for SARS-CoV-2: The shots that saved the world. Front Immunol 2022; 13:961198. [PMID: 36263030 PMCID: PMC9574046 DOI: 10.3389/fimmu.2022.961198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In December 2019, an outbreak emerged of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-19). The World Health Organisation announced the outbreak a global health emergency on 30 January 2020 and by 11 March 2020 it was declared a pandemic. The spread and severity of the outbreak took a heavy toll and overburdening of the global health system, particularly since there were no available drugs against SARS-CoV-2. With an immediate worldwide effort, communication, and sharing of data, large amounts of funding, researchers and pharmaceutical companies immediately fast-tracked vaccine development in order to prevent severe disease, hospitalizations and death. A number of vaccines were quickly approved for emergency use, and worldwide vaccination rollouts were immediately put in place. However, due to several individuals being hesitant to vaccinations and many poorer countries not having access to vaccines, multiple SARS-CoV-2 variants quickly emerged that were distinct from the original variant. Uncertainties related to the effectiveness of the various vaccines against the new variants as well as vaccine specific-side effects have remained a concern. Despite these uncertainties, fast-track vaccine approval, manufacturing at large scale, and the effective distribution of COVID-19 vaccines remain the topmost priorities around the world. Unprecedented efforts made by vaccine developers/researchers as well as healthcare staff, played a major role in distributing vaccine shots that provided protection and/or reduced disease severity, and deaths, even with the delta and omicron variants. Fortunately, even for those who become infected, vaccination appears to protect against major disease, hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing vaccination studies and vaccine platforms that have saved many deaths from the pandemic.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Qian Yao
- Graduate School, University of St. La Salle, Bacolod City, Philippines
| | | | | | - Chirag A. Patel
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Aayushi B. Patel
- Pharmacy Section, LM. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
35
|
Chavda VP, Sonak SS, Munshi NK, Dhamade PN. Pseudoscience and fraudulent products for COVID-19 management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62887-62912. [PMID: 35836045 PMCID: PMC9282830 DOI: 10.1007/s11356-022-21967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 05/13/2023]
Abstract
As of now, the COVID-19 pandemic has become uncontrolled and is spreading widely throughout the world. Additionally, new variants of the mutated viral variants have been found in some countries that are more dangerous than the original strain. Even vaccines cannot produce complete protective immunity against the newer strains of SARS-CoV-2. Due to such a dreadful situation, lots of fear and depression have been created among the public. People are looking for the treatment of the disease at any cost and there is a race in the market to provide treatment and make money, whether it is effective or not! In such a condition, many fraud products, remedies, and myths have come into the market, which is falsely claimed to be effective for the disease and can harm the patients. Hence, FDA has banned such products and remedies. In this review, we have compiled all such fraudulent and pseudosciences identified for COVID-19. Currently, in the pandemic time, health agencies are approving the repurposed medicines based on the small-scale clinical data for emergency uses that become ineffective (most of the cases) after large randomized clinical studies. Proper vigilance strategies need to be defined by the regulatory agencies of the nation and routine awareness programs shall be arranged for educating the people and healthcare workers on routine updates.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Shreya S Sonak
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Nafesa K Munshi
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Pooja N Dhamade
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| |
Collapse
|
36
|
Chavda VP, Patel AB, Vora LK, Apostolopoulos V, Uhal BD. Dendritic cell-based vaccine: the state-of-the-art vaccine platform for COVID-19 management. Expert Rev Vaccines 2022; 21:1395-1403. [PMID: 35929957 DOI: 10.1080/14760584.2022.2110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A correlation between new coronaviruses and host immunity, as well as the role of defective immune function in host response, would be extremely helpful in understanding coronavirus disease (COVID-19) pathogenicity, and a coherent structure of treatments and vaccines. As existing vaccines may be inadequate for new viral variants emerging in various regions of the world, it is a vital requirement for fresh and effective therapeutic alternatives. AREA COVERED Immunotherapy may give a viable protective option for COVID-19, a disease that is currently a big burden on global health and economic systems. Herein, we have outlined three dendritic cell (DC)-based vaccines for COVID-19 which are in human clinical trials and have shown encouraging outcomes. EXPERT OPINION With existing knowledge of the virus, and the nature of DC, DC-based vaccines may be proven to be effective in inducing long-lasting protective immunity, especially T cell responses.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad - 380058, Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
37
|
Aged Population and Immunocompromised Patients: Impact on SARS-CoV-2 Variants and Treatment Outcomes. Biologics 2022. [DOI: 10.3390/biologics2030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with an immunocompromised state are at risk of developing a long-term infection from the coronavirus 2 that causes severe acute respiratory syndrome (SARS-CoV-2) [...]
Collapse
|
38
|
Chavda VP, Soni S, Prajapati R, Yallapu MM, Apostolopoulos V. Reply to the letter ' Effectiveness of COVID-19 vaccines against Omicron variant'. Immunotherapy 2022; 14:905-908. [PMID: 35787091 DOI: 10.2217/imt-2022-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.,Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India
| | - Shailvi Soni
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia
| |
Collapse
|