1
|
Qin Q, Lei Y, Sun X, Fu X, Fan W, Zhu D, Lei Z, Liu J, Wang J. Postoperative cognitive dysfunction in heart transplantation recipients. Clin Transplant 2024; 38:e15337. [PMID: 38762786 DOI: 10.1111/ctr.15337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the occurrence and risk factors of postoperative neurocognitive disorder (NCD) in patients who underwent heart transplantation. METHODS Seventy-six heart transplant patients were analyzed for clinical data including gender, age, height, weight, education level, left ventricular ejection fraction (LVEF), stroke volume (SV), transplantation duration, and pretransplant medical history. Cognitive function was assessed using the mini-mental status examination (MMSE) and Montreal cognitive assessment (MoCA) scales. Patients were categorized into cognitively normal and impaired groups based on the presence or absence of cognitive dysfunction, and their cognitive function scores were compared. Multivariate logistic regression was used to identify independent risk factors for cognitive impairment in postoperative cardiac transplant patients. RESULTS Cognitive dysfunction was observed in 48 out of 76 heart transplant patients, representing an incidence of 63.2%. Cognitive impairment in heart transplant recipients predominantly affected multiple cognitive domains. Logistic regression analysis identified age (OR = 1.057, 95% CI 1.002-1.115), gender (OR = .200, 95% CI .044-.919), education level (OR = .728, 95% CI .600-.883), LVEF (OR = .891, 95% CI .820-.969), and history of diabetes (OR = 7.674, 95% CI 1.317-44.733) as independent risk factors for postoperative NCD in heart transplant recipients (P < .05). CONCLUSION The study found a high incidence of postoperative NCD in heart transplant patients, with gender, age, education level, LVEF, and diabetes history being significant risk factors. Early identification and intervention targeting these risk factors may help prevent NCD in postheart transplant patients and improve long-term outcomes.
Collapse
Affiliation(s)
- Qian Qin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaojie Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dongyong Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ziqiao Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
2
|
Ding Z, Leung PY, Lee TL, Chan AS. Effectiveness of lifestyle medicine on cognitive functions in mild cognitive impairments and dementia: A systematic review on randomized controlled trials. Ageing Res Rev 2023; 86:101886. [PMID: 36806378 DOI: 10.1016/j.arr.2023.101886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Mild cognitive impairment (MCI) and dementia are associated with lifestyle risk factors, making lifestyle medicine a potentially viable intervention for people with MCI and dementia. The present study aims to examine the effectiveness of lifestyle medicine on cognitive functions among people with MCI and dementia, by performing a systematic review and meta-analysis on randomized controlled trials (RCT). A systematic literature search was conducted to extract RCTs adopting lifestyle interventions of diet, exercise, and stress management or emotional well-being. Results showed that 65 studies were eligible. Exercise was the most promising lifestyle intervention that improved various cognitive functions among people with MCI and dementia, and was more effective in MCI than in dementia. Interventions on stress management or emotional well-being did not show a significant effect on people with MCI, and the evidence for people with dementia was insufficient to conclude. Similarly, due to the lack of RCTs on a healthy dietary pattern, the effectiveness of diet interventions was not examined. In conclusion, the exercise component of lifestyle medicine can be an effective and clinically significant intervention for protecting people with MCI and dementia against cognitive declines, especially when served as an early intervention at the stage of MCI.
Collapse
Affiliation(s)
- Zihan Ding
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Pui-Ying Leung
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Lok Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Gambella E, Margaritini A, Benadduci M, Rossi L, D'Ascoli P, Riccardi GR, Pasquini S, Civerchia P, Pelliccioni G, Bevilacqua R, Maranesi E. An integrated intervention of computerized cognitive training and physical exercise in virtual reality for people with Alzheimer's disease: The jDome study protocol. Front Neurol 2022; 13:964454. [PMID: 36034306 PMCID: PMC9412195 DOI: 10.3389/fneur.2022.964454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Alzheimer's disease is a neurodegenerative syndrome characterized by cognitive deficits, loss of daily functions, and mental and behavioral disorders, which cause stress and negatively affect the quality of life. Studies in the field suggest that combining cognitive training with physical activity can reduce the risk of developing the disease and, once neurodegeneration has begun, it slows its progress. In particular, virtual reality and augmented reality administer cognitive stimulation while providing a link to autobiographical memory through reminiscence, enabling the improvement of the person's quality of life. The present protocol aims to evaluate the effectiveness of cognitive and physical treatments, integrated with the addition of virtual reality and reminiscence elements, using the Brainer software, in which people will find cognitive training, and the jDome® BikeAround™ system, which will allow participants to pedal along a personalized path projected on a schematic, using an exercise bike connected to the system. Methods and analysis For this study, 78 patients with mild Alzheimer's dementia were recruited and divided into the Experimental Group (EG) and Control Group (CG). Sixteen treatment sessions of 60 min each were conducted for both groups (2 training sessions per week, for 8 weeks), including 1 patient at a time. The EG received cognitive treatment with Brainer and physical training with jDome, while the CG received cognitive treatment with Brainer and physical training with a classic bicycle. The evaluation mainly focused on the assessment of the person's cognitive status. Other analyses were conducted on the quality of life, mood, behavioral disorders, and physical function, which were considered secondary outcomes. Discussions The ultimate goal of the present study is to test the effectiveness of a treatment for people with mild Alzheimer's focused on the integration of cognitive training and aerobic physical activity, using an exercise bike, with the addition of virtual reality and reminiscence elements. Ethics and dissemination The study was approved by the Ethics Committee of the IRCCS INRCA. It was recorded in ClinicalTrials.gov on 2 June 2022 with the number NCT05402423. The study findings will be used for publication in peer-reviewed scientific journals and presentations in scientific meetings.
Collapse
Affiliation(s)
| | | | | | - Lorena Rossi
- Scientific Direction, IRCCS INRCA, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Han K, Tang Z, Bai Z, Su W, Zhang H. Effects of combined cognitive and physical intervention on enhancing cognition in older adults with and without mild cognitive impairment: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:878025. [PMID: 35928994 PMCID: PMC9343961 DOI: 10.3389/fnagi.2022.878025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background Combined cognitive and physical intervention is commonly used as a non-pharmacological therapy to improve cognitive function in older adults, but it is uncertain whether combined intervention can produce stronger cognitive gains than either single cognitive or sham intervention. To address this uncertainty, we performed a systematic review and meta-analysis to evaluate the effects of combined intervention on cognition in older adults with and without mild cognitive impairment (MCI). Methods We systematically searched eight databases for relevant articles published from inception to November 1, 2021. Randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) were used to compare the effects of the combined intervention with a single cognitive or sham intervention on cognition in older adults with and without MCI aged ≥ 50 years. We also searched Google Scholar, references of the included articles, and relevant reviews. Two independent reviewers performed the article screening, data extraction, and bias assessment. GRADEpro was used to rate the strength of evidence, and RevMan software was used to perform the meta-analysis. Results Seventeen studies were included in the analysis, comprising eight studies of cognitively healthy older adults and nine studies of older adults with MCI. The meta-analysis showed that the combined intervention significantly improved most cognitive functions and depression (SMD = 0.99, 95% CI 0.54-1.43, p < 0.0001) in older adults compared to the control groups, but the intervention effects varied by cognition domains. However, there was no statistically significant difference in the maintenance between the combined and sham interventions (SMD = 1.34, 95% CI -0.58-3.27, p = 0.17). The subgroup analysis also showed that there was no statistical difference in the combined intervention to improve global cognition, memory, attention, and executive function between cognitive healthy older adults and older adults with MCI. Conclusions Combined intervention improves cognitive functions in older adults with and without MCI, especially in global cognition, memory, and executive function. However, there was no statistical difference in the efficacy of the combined intervention to improve cognition between cognitive healthy older adults and older adults with MCI. Moreover, the maintenance of the combined intervention remains unclear due to the limited follow-up data and high heterogeneity. In the future, more stringent study designs with more follow-ups are needed further to explore the effects of combined intervention in older adults. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD42021292490.
Collapse
Affiliation(s)
- Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Zirong Bai
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study. Neural Plast 2022; 2022:6197505. [PMID: 35880231 PMCID: PMC9308536 DOI: 10.1155/2022/6197505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.
Collapse
|
7
|
Papaioannou T, Voinescu A, Petrini K, Stanton Fraser D. Efficacy and Moderators of Virtual Reality for Cognitive Training in People with Dementia and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 88:1341-1370. [PMID: 35811514 DOI: 10.3233/jad-210672] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) and dementia result in cognitive decline which can negatively impact everyday functional abilities and quality of life. Virtual reality (VR) interventions could benefit the cognitive abilities of people with MCI and dementia, but evidence is inconclusive. OBJECTIVE To investigate the efficacy of VR training on global and domain-specific cognition, activities of daily living and quality of life. To explore the influence of priori moderators (e.g., immersion type, training type) on the effects of VR training. Adverse effects of VR training were also considered. METHODS A systematic literature search was conducted on all major databases for randomized control trial studies. Two separate meta-analyses were performed on studies with people with MCI and dementia. RESULTS Sixteen studies with people with MCI and four studies with people with dementia were included in each meta-analysis. Results showed moderate to large effects of VR training on global cognition, attention, memory, and construction and motor performance in people with MCI. Immersion and training type were found to be significant moderators of the effect of VR training on global cognition. For people with dementia, results showed moderate to large improvements after VR training on global cognition, memory, and executive function, but a subgroup analysis was not possible. CONCLUSION Our findings suggest that VR training is an effective treatment for both people with MCI and dementia. These results contribute to the establishment of practical guidelines for VR interventions for patients with cognitive decline.
Collapse
Affiliation(s)
| | | | - Karin Petrini
- Department of Psychology, University of Bath, Claverton Down, Bath, UK.,Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Claverton Down, Bath, UK
| | | |
Collapse
|
8
|
Huang HW, Zhang XK, Li HY, Wang YG, Jing B, Chen Y, Patel MB, Ely EW, Liu YO, Zhou JX, Lin S, Zhang GB. Higher Grade Glioma Increases the Risk of Postoperative Delirium: Deficient Brain Compensation Might Be a Potential Mechanism of Postoperative Delirium. Front Aging Neurosci 2022; 14:822984. [PMID: 35493935 PMCID: PMC9045131 DOI: 10.3389/fnagi.2022.822984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The brain compensation mechanism in postoperative delirium (POD) has not been reported. We uncovered the mechanism by exploring the association between POD and glioma grades, and the relationship between preoperative brain structural and functional compensation with POD in patients with frontal glioma. Methods A total of 335 adult patients with glioma were included. The multivariable analysis examined the association between tumor grade and POD. Then, 20 patients with left frontal lobe glioma who had presurgical structural and functional MRI data and Montreal Cognitive Assessment (MoCA) in this cohort were analyzed. We measured the gray matter volume (GMV) and functional connectivity (FC) in patients with (n = 8) and without (n = 12) POD and healthy controls (HCs, n = 29) to detect the correlation between the structural and functional alteration and POD. Results The incidence of POD was 37.3%. Multivariable regression revealed that high-grade glioma had approximately six times the odds of POD. Neuroimaging data showed that compared with HC, the patients with left frontal lobe glioma showed significantly increased GMV of the right dorsal lateral prefrontal cortex (DLPFC) in the non-POD group and decreased GMV of right DLPFC in the POD group, and the POD group exhibited significantly decreased FC of right DLPFC, and the non-POD group showed the increasing tendency. Partial correlation analysis showed that GMV in contralesional DLPFC were positively correlated with preoperative neurocognition, and the GMV and FC in contralesional DLPFC were negatively correlated with POD. Conclusions Our findings suggested that insufficient compensation for injured brain regions involving cognition might be more vulnerable to suffering from POD.
Collapse
Affiliation(s)
- Hua-Wei Huang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Kang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yong-Gang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - You Chen
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Mayur B. Patel
- Section of Surgical Sciences, Department of Surgery and Neurosurgery, Division of Trauma, Surgical Critical Care, and Emergency General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Geriatric Research, Education, and Clinical Center Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - E. Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| |
Collapse
|
9
|
Rajji TK. Potency and variation in non-invasive brain stimulation: Time to act. Clin Neurophysiol 2021; 132:2251-2252. [PMID: 34154935 DOI: 10.1016/j.clinph.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Tarek K Rajji
- Department of Psychiatry, Toronto Dementia Research Alliance, University of Toronto, Canada; Canada Research Chair in Neurostimulation for Cognitive Disorders, Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Canada.
| |
Collapse
|
10
|
Guidali G, Roncoroni C, Bolognini N. Modulating Frontal Networks' Timing-Dependent-Like Plasticity With Paired Associative Stimulation Protocols: Recent Advances and Future Perspectives. Front Hum Neurosci 2021; 15:658723. [PMID: 33967723 PMCID: PMC8100231 DOI: 10.3389/fnhum.2021.658723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Starting from the early 2000s, paired associative stimulation (PAS) protocols have been used in humans to study brain connectivity in motor and sensory networks by exploiting the intrinsic properties of timing-dependent cortical plasticity. In the last 10 years, PAS have also been developed to investigate the plastic properties of complex cerebral systems, such as the frontal ones, with promising results. In the present work, we review the most recent advances of this technique, focusing on protocols targeting frontal cortices to investigate connectivity and its plastic properties, subtending high-order cognitive functions like memory, decision-making, attentional, or emotional processing. Overall, current evidence reveals that PAS can be effectively used to assess, enhance or depress physiological connectivity within frontal networks in a timing-dependent way, in turn modulating cognitive processing in healthy and pathological conditions.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Camilla Roncoroni
- Department of Psychology, NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology, NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
11
|
Rajji TK. Noninvasive brain stimulation for the treatment of neurocognitive disorders: right for prime time? Curr Opin Psychiatry 2021; 34:129-135. [PMID: 33395102 DOI: 10.1097/yco.0000000000000686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Neurocognitive disorders are associated with tremendous burden at the level of the individual, the care giver, and society at large. No effective treatments have been discovered to date. RECENT FINDINGS Noninvasive brain stimulation (NIBS) comprises several promising interventions that have been studied in Alzheimer's disease and related dementias. Most recent studies have tested transcranial direct current stimulation or repetitive transcranial magnetic stimulation on their own or in combination with other interventions, particularly cognitive training. While most studies were proof-of-principle studies with small sample sizes, combination and long-duration protocols seem to be promising approaches to pursue. Some studies also investigated novel neurophysiological markers as predictors of response to NIBS. SUMMARY NIBS presents several interventional options that are ready to be evaluated using well powered, long-duration trials. These future studies should build on the promising leads from the current literature, including the potential advantage of combining NIBS with other interventions; the delivery of interventions for long durations to assess long-term impact; and the use of neurophysiological markers that could optimize the personalization and efficacy of NIBS.
Collapse
Affiliation(s)
- Tarek K Rajji
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health.,Department of Psychiatry & Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Velioglu HA, Hanoglu L, Bayraktaroglu Z, Toprak G, Guler EM, Bektay MY, Mutlu-Burnaz O, Yulug B. Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer's disease: Possible role of BDNF and oxidative stress. Neurobiol Learn Mem 2021; 180:107410. [PMID: 33610772 DOI: 10.1016/j.nlm.2021.107410] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuromodulation technique which is increasingly used for cognitive impairment in Alzheimer's Disease (AD). Although rTMS has been shown to modify Brain-Derived Neurotrophic Factor (BDNF) and oxidative stress levels in many neurological and psychiatric diseases, there is still no study evaluating the relationship between memory performance, BDNF, oxidative stress, and resting brain connectivity following rTMS in Alzheimer's patients. Furthermore, there are increasing clinical data showing that the stimulation of strategic brain regions may lead to more robust improvements in memory functions compared to conventional rTMS. In this study, we aimed to evaluate the possible disease-modifying effects of rTMS on the lateral parietal cortex in AD patients who have the highest connectivity with the hippocampus. To fill the mentioned research gaps, we have evaluated the relationships between resting-state Functional Magnetic Resonance Imaging (fMRI), cognitive scores, blood BDNF levels, and total oxidative/antioxidant status to explain the therapeutic and potential disease-modifying effects of rTMS which has been applied at 20 Hz frequencies for two weeks. Our results showed significantly increased visual recognition memory functions and clock drawing test scores which were associated with elevated peripheral BDNF levels, and decreased oxidant status after two weeks of left lateral parietal TMS stimulation. Clinically our findings suggest that the left parietal region targeted rTMS application leads to significant improvement in familiarity-based cognition associated with the network connections between the left parietal region and the hippocampus.
Collapse
Affiliation(s)
- Halil Aziz Velioglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Lutfu Hanoglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey; Istanbul Medipol University School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey; Istanbul Medipol University, International School of Medicine Department of Physiology, Istanbul, Turkey
| | - Guven Toprak
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Eray Metin Guler
- University of Health Sciences Hamidiye School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; University of Health Sciences, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Turkey
| | - Muhammed Yunus Bektay
- Bezmialem Vakif University School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey; Marmara University School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey
| | - Ozlem Mutlu-Burnaz
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- Alanya Alaaddin Keykubat University School of Medicine, Department of Neurology, Alanya/Antalya, Turkey.
| |
Collapse
|
13
|
Cocco S, Rinaudo M, Fusco S, Longo V, Gironi K, Renna P, Aceto G, Mastrodonato A, Li Puma DD, Podda MV, Grassi C. Plasma BDNF Levels Following Transcranial Direct Current Stimulation Allow Prediction of Synaptic Plasticity and Memory Deficits in 3×Tg-AD Mice. Front Cell Dev Biol 2020; 8:541. [PMID: 32719795 PMCID: PMC7349675 DOI: 10.3389/fcell.2020.00541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Early diagnosis of Alzheimer’s disease (AD) supposedly increases the effectiveness of therapeutic interventions. However, presently available diagnostic procedures are either invasive or require complex and expensive technologies, which cannot be applied at a larger scale to screen populations at risk of AD. We were looking for a biomarker allowing to unveil a dysfunction of molecular mechanisms, which underly synaptic plasticity and memory, before the AD phenotype is manifested and investigated the effects of transcranial direct current stimulation (tDCS) in 3×Tg-AD mice, an experimental model of AD which does not exhibit any long-term potentiation (LTP) and memory deficits at the age of 3 months (3×Tg-AD-3M). Our results demonstrated that tDCS differentially affected 3×Tg-AD-3M and age-matched wild-type (WT) mice. While tDCS increased LTP at CA3-CA1 synapses and memory in WT mice, it failed to elicit these effects in 3×Tg-AD-3M mice. Remarkably, 3×Tg-AD-3M mice did not show the tDCS-dependent increases in pCREBSer133 and pCaMKIIThr286, which were found in WT mice. Of relevance, tDCS induced a significant increase of plasma BDNF levels in WT mice, which was not found in 3×Tg-AD-3M mice. Collectively, our results showed that plasticity mechanisms are resistant to tDCS effects in the pre-AD stage. In particular, the lack of BDNF responsiveness to tDCS in 3×Tg-AD-3M mice suggests that combining tDCS with dosages of plasma BDNF levels may provide an easy-to-detect and low-cost biomarker of covert impairment of synaptic plasticity mechanisms underlying memory, which could be clinically applicable. Testing proposed here might be useful to identify AD in its preclinical stage, allowing timely and, hopefully, more effective disease-modifying interventions.
Collapse
Affiliation(s)
- Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Katia Gironi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pietro Renna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
14
|
Gough N, Brkan L, Subramaniam P, Chiuccariello L, De Petrillo A, Mulsant BH, Bowie CR, Rajji TK. Feasibility of remotely supervised transcranial direct current stimulation and cognitive remediation: A systematic review. PLoS One 2020; 15:e0223029. [PMID: 32092069 PMCID: PMC7039434 DOI: 10.1371/journal.pone.0223029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023] Open
Abstract
With technological advancements and an aging population, there is growing interest in delivering interventions at home. Transcranial Direct Current Stimulation (tDCS) and Cognitive Remediation (CR) as well as Cognitive Training (CT) have been widely studied, but mainly in laboratories or hospitals. Thus, the objectives of this review are to examine feasibility and the interventions components to support the domiciliary administration of tDCS and CR. We performed a systematic search of electronic databases, websites and reference lists of included articles from the first date available until October 31, 2018. Articles included had to meet the following criteria: original work published in English using human subjects, majority of tDCS or CR intervention administered remotely. A total of 39 studies were identified (16 tDCS, 23 CR/CT, 5 using both tDCS & CT). Four studies were single case studies and two were multiple case studies. The remaining 33 studies had a range of 9-135 participants. Five tDCS and nine CR/CT studies were double blind randomized controlled trials. Most studies focused on schizophrenia (8/39) and multiple sclerosis (8/39). Literature examined suggests the feasibility of delivering tDCS or CR/CT remotely with the support of information and communication technologies.
Collapse
Affiliation(s)
- Nicole Gough
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Lea Brkan
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Ponnusamy Subramaniam
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Health Psychology Program & Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lina Chiuccariello
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Alessandra De Petrillo
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher R. Bowie
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Tarek K. Rajji
- Division of Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Liu J, Zhang B, Wilson G, Kong J. New Perspective for Non-invasive Brain Stimulation Site Selection in Mild Cognitive Impairment: Based on Meta- and Functional Connectivity Analyses. Front Aging Neurosci 2019; 11:228. [PMID: 31551754 PMCID: PMC6736566 DOI: 10.3389/fnagi.2019.00228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background Non-invasive brain stimulation (NIBS) has been widely used to treat mild cognitive impairment (MCI). However, there exists no consensus on the best stimulation sites. Objective To explore potential stimulation locations for NIBS treatment in patients with MCI, combining meta- and resting state functional connectivity (rsFC) analyses. Methods The meta-analysis was conducted to identify brain regions associated with MCI. Regions of interest (ROIs) were extracted based on this meta-analysis. The rsFC analysis was applied to 45 MCI patients to determine brain surface regions that are functionally connected with the above ROIs. Results We found that the dorsolateral prefrontal cortex (DLPFC) and inferior frontal gyrus (IFG) were the overlapping brain regions between our results and those of previous studies. In addition, we recommend that the temporoparietal junction (including the angular gyrus), which was found in both the meta- and rsFC analysis, should be considered in NIBS treatment of MCI. Furthermore, the bilateral orbital prefrontal gyrus, inferior temporal gyrus, medial superior frontal gyrus, and right inferior occipital gyrus may be potential brain stimulation sites for NIBS treatment of MCI. Conclusion Our results provide several potential sites for NIBS, such as the DLFPC and IFG, and may shed light on the locations of NIBS sites in the treatment of patients with MCI.
Collapse
Affiliation(s)
- Jiao Liu
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Binlong Zhang
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Georgia Wilson
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Jian Kong
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|