1
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Efe OE, Kibaroğlu S, Erdem ŞR. Effect of hydrogen sulfide on ischemia-reperfusion injury of kidney: A systematic review and meta-analysis of in vivo animal studies. Eur J Pharmacol 2023; 943:175564. [PMID: 36736943 DOI: 10.1016/j.ejphar.2023.175564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hydrogen sulfide (H2S) has been shown to be effective against kidney ischemia-reperfusion injury (IRI) in animal studies. We aimed to evaluate the current evidence from in vivo animal studies for the protective effects of H2S against kidney IRI by systematically reviewing the literature and performing a meta-analysis. Based on the preregistered protocol (PROSPERO: CRD42021295469); PubMed, Medline, Embase, Web of Science, and Scopus were searched to identify in vivo animal studies evaluating the effect of H2S against kidney IRI. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated and pooled using random-effects meta-analysis. Twenty-two articles complied with eligibility criteria, from which the creatinine levels of 152 control animals and 182 animals treated with H2S from 27 individual experiments were pooled. H2S treatment significantly decreased serum creatinine (SMD = -1.82 [95% CI -1.12, -2.51], p < 0.0001), blood urea nitrogen (-2.50 [-1.46, -3.54], p < 0.0001), tissue malondialdehyde (-2.59 [-3.30, -1.88], p < 0.0001), tunel positive cells (-3.16 [-4.38, -1.94], p < 0.0001), and tubular damage score (-2.01 [-3.03, -0.99], p < 0.0001). There was a high heterogeneity across studies (I2 = 83.5% for serum creatinine level). In meta-regression analysis, the type of H2S donor and its application time accounted for 11.3% (p = 0.025) and 16.6% (p = 0.039) of heterogeneity, respectively. Accordingly, H2S protects the kidney against IRI only if it is given as GYY4137 before or during ischemia. Although H2S is a potential candidate against kidney IRI, further well-designed preclinical studies focusing on GYY4137 are warranted before clinical implication.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Arıyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Oğuzhan Ekin Efe
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Seda Kibaroğlu
- Department of Pharmacology, Başkent University Institute of Health Sciences, Ankara, Turkey
| | - Ş Remzi Erdem
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Melis N, Rubera I, Giraud S, Cougnon M, Duranton C, Poet M, Jarretou G, Thuillier R, Counillon L, Hauet T, Pellerin L, Tauc M, Pisani DF. Renal Ischemia Tolerance Mediated by eIF5A Hypusination Inhibition Is Regulated by a Specific Modulation of the Endoplasmic Reticulum Stress. Cells 2023; 12:cells12030409. [PMID: 36766751 PMCID: PMC9913814 DOI: 10.3390/cells12030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Through kidney transplantation, ischemia/reperfusion is known to induce tissular injury due to cell energy shortage, oxidative stress, and endoplasmic reticulum (ER) stress. ER stress stems from an accumulation of unfolded or misfolded proteins in the lumen of ER, resulting in the unfolded protein response (UPR). Adaptive UPR pathways can either restore protein homeostasis or can turn into a stress pathway leading to apoptosis. We have demonstrated that N1-guanyl-1,7-diamineoheptane (GC7), a specific inhibitor of eukaryotic Initiation Factor 5A (eIF5A) hypusination, confers an ischemic protection of kidney cells by tuning their metabolism and decreasing oxidative stress, but its role on ER stress was unknown. To explore this, we used kidney cells pretreated with GC7 and submitted to either warm or cold anoxia. GC7 pretreatment promoted cell survival in an anoxic environment concomitantly to an increase in xbp1 splicing and BiP level while eiF2α phosphorylation and ATF6 nuclear level decreased. These demonstrated a specific modulation of UPR pathways. Interestingly, the pharmacological inhibition of xbp1 splicing reversed the protective effect of GC7 against anoxia. Our results demonstrated that eIF5A hypusination inhibition modulates distinctive UPR pathways, a crucial mechanism for the protection against anoxia/reoxygenation.
Collapse
Affiliation(s)
- Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Isabelle Rubera
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Sebastien Giraud
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Marc Cougnon
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Christophe Duranton
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Mallorie Poet
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Gisèle Jarretou
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Raphaël Thuillier
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Laurent Counillon
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Thierry Hauet
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Luc Pellerin
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Michel Tauc
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Didier F. Pisani
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
- Correspondence:
| |
Collapse
|
3
|
Lepoittevin M, Giraud S, Kerforne T, Allain G, Thuillier R, Hauet T. How to improve results after DCD (donation after circulation death). Presse Med 2022; 51:104143. [PMID: 36216034 DOI: 10.1016/j.lpm.2022.104143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient. We will address and discuss the key issues from the perspective of team organization, legislation and its evolution, and the ethical framework. In a second part, the avenues to improve the quality of organs will be presented following the itinerary of the organs between the donor and the recipient. The important moments from the point of view of therapeutic strategy will be put into perspective. New connections between key players involved in pathophysiological mechanisms and implications for innate immunity and injury processes are among the avenues to explore. Technological developments to improve the quality of organs from these recipients will be analyzed, such as perfusion techniques with new modalities of temperatures and oxygenation. New molecules are being investigated for their potential role in protecting these organs and an analysis of potential prospects will be proposed. Finally, the important perspectives that seem to be favored will be discussed in order to reposition the use of deceased donors after circulatory arrest. The use of these organs has become a routine procedure and improving their quality and providing the means for their evaluation is absolutely inevitable.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
| | - Sébastien Giraud
- Unité UMR U1082, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thomas Kerforne
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France
| | - Géraldine Allain
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France
| | - Raphaël Thuillier
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thierry Hauet
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire « Survival Optimization in Organ Transplantation », CHU de Poitiers, 2 rue de la Milétrie - CS 90577, 86021 Poitiers Cedex, France.
| |
Collapse
|
4
|
Barrera-Chimal J, Jaisser F, Anders HJ. The mineralocorticoid receptor in chronic kidney disease. Br J Pharmacol 2021; 179:3152-3164. [PMID: 34786690 DOI: 10.1111/bph.15734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health concern, affecting approximately 10% of the population worldwide. CKD of glomerular or tubular origin leads to the activation of stress mechanisms, including the renin angiotensin aldosterone system and mineralocorticoid receptor (MR) activation. Over the last two decades, blockade of the MR has arisen as a potential therapeutic approach against various forms of kidney disease. In this review, we summarize the experimental studies that have shown a protective effect of MR antagonists (MRAs) in non-diabetic and diabetic CKD animal models. Moreover, we review the main clinical trials that have shown the clinical application of MRAs to reduce albuminuria and, importantly, to slow CKD progression. Recent evidence from the FIDELIO trial showed that the MRA finerenone can reduce hard kidney outcomes when added to the standard of care in CKD associated with type 2 diabetes. Finally, we discuss the effects of MRAs relative to those of SGLT2 inhibitors, as well as the potential benefit of combination therapy to maximize organ protection.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 1, D-80336, München
| |
Collapse
|
5
|
Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021; 169:258-270. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.
Collapse
Affiliation(s)
- Romain Carcy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mallorie Poet
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Manon Durandy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Antoine Sicard
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Néphrologie-Dialyse-Transplantation, Nice, France; Clinical Research Unit of Université Côte d'Azur (UMR2CA), France
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | | | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
6
|
Zhang M, Yuan J, Dong R, Da J, Li Q, Hu Y, Yu F, Ran Y, Zha Y, Long Y. Hyperhomocysteinemia exacerbates ischemia-reperfusion injury-induced acute kidney injury by mediating oxidative stress, DNA damage, JNK pathway, and apoptosis. Open Life Sci 2021; 16:537-543. [PMID: 34124373 PMCID: PMC8165256 DOI: 10.1515/biol-2021-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022] Open
Abstract
Background Hyperhomocysteinemia (HHcy) plays an important role in the progression of many kidney diseases; however, the relationship between HHcy and ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-induced AKI) is far from clear. In this study, we try to investigate the effect and possible mechanisms of HHcy on IRI-induced AKI. Methods Twenty C57/BL6 mice were reared with a regular diet or high methionine diet for 2 weeks (to generate HHcy mice); after that, mice were subgrouped to receive sham operation or ischemia-reperfusion surgery. Twenty four hour after reperfusion, serum creatinine, blood urea nitrogen, and Malondialdehyde (MDA) were measured. H&E staining for tubular injury, western blot for γH2AX, JNK, p-JNK, and cleaved caspase 3, and TUNEL assay for tubular cell apoptosis were also performed. Results Our results showed that HHcy did not influence the renal function and histological structure, as well as the levels of MDA, γH2AX, JNK, p-JNK, and tubular cell apoptosis in control mice. However, in IRI-induced AKI mice, HHcy caused severer renal dysfunction and tubular injury, higher levels of oxidative stress, DNA damage, JNK pathway activation, and tubular cell apoptosis. Conclusion Our results demonstrated that HHcy could exacerbate IRI-induced AKI, which may be achieved through promoting oxidative stress, DNA damage, JNK pathway activation, and consequent apoptosis.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Biomedicine, Guizhou University School of Medicine, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Jing Yuan
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Rong Dong
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Jingjing Da
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Qian Li
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Ying Hu
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Fangfang Yu
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Yan Ran
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Yan Zha
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| | - Yanjun Long
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, No. 83 East ZhongShan Road, Guiyang 550002, Guizhou, People's Republic of China
| |
Collapse
|
7
|
High Throughput Proteomic Exploration of Hypothermic Preservation Reveals Active Processes within the Cell Associated with Cold Ischemia Kinetic. Int J Mol Sci 2021; 22:ijms22052384. [PMID: 33673561 PMCID: PMC7956856 DOI: 10.3390/ijms22052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were modulated. Important time windows were revealed: a-during the first 3 h, central proteins were upregulated within these pathways; b-the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c-after that time, the overall decrease in protein expression was observed; d-at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.
Collapse
|
8
|
Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 2021; 22:ijms22052366. [PMID: 33673423 PMCID: PMC7956779 DOI: 10.3390/ijms22052366] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
Collapse
Affiliation(s)
- Pauline Chazelas
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Clara Steichen
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Patrick Trouillas
- INSERM U1248, IPPRITT, Université de Limoges, 87032 Limoges, France;
- RCPTM, University Palacký of Olomouc, 771 47 Olomouc, Czech Republic
| | - Patrick Hannaert
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
| | - Raphaël Thuillier
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Giraud
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Thierry Hauet
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
- FHU SUPORT Survival Optimization in Organ Transplantation, 86021 Poitiers, France
- IBiSA Plateforme Modélisation Préclinique-Innovations Chirurgicale et Technologique (MOPICT), Do-maine Expérimental du Magneraud, 17700 Surgères, France
| | - Jérôme Guillard
- UMR CNRS 7285 IC2MP, Team 5 Chemistry, Université de Poitiers, 86073 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-38-59
| |
Collapse
|
9
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
10
|
Danion J, Thuillier R, Allain G, Bruneval P, Tomasi J, Pinsard M, Hauet T, Kerforne T. Evaluation of Liver Quality after Circulatory Death Versus Brain Death: A Comparative Preclinical Pig Model Study. Int J Mol Sci 2020; 21:ijms21239040. [PMID: 33261172 PMCID: PMC7730280 DOI: 10.3390/ijms21239040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The current organ shortage in hepatic transplantation leads to increased use of marginal livers. New organ sources are needed, and deceased after circulatory death (DCD) donors present an interesting possibility. However, many unknown remains on these donors and their pathophysiology regarding ischemia reperfusion injury (IRI). Our hypothesis was that DCD combined with abdominal normothermic regional recirculation (ANOR) is not inferior to deceased after brain death (DBD) donors. We performed a mechanistic comparison between livers from DBD and DCD donors in a highly reproducible pig model, closely mimicking donor conditions encountered in the clinic. DCD donors were conditioned by ANOR. We determined that from the start of storage, pro-lesion pathways such as oxidative stress and cell death were induced in both donor types, but to a higher extent in DBD organs. Furthermore, pro-survival pathways, such as resistance to hypoxia and regeneration showed activation levels closer to healthy livers in DCD-ANOR rather than in DBD organs. These data highlight critical differences between DBD and DCD-ANOR livers, with an apparent superiority of DCD in terms of quality. This confirms our hypothesis and further confirms previously demonstrated benefits of ANOR. This encourages the expended use of DCD organs, particularly with ANOR preconditioning.
Collapse
Affiliation(s)
- Jérôme Danion
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU de Poitiers, Service de Chirurgie Générale et Endocrinienne, F-86021 Poitiers, France
| | - Raphael Thuillier
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Biochimie, F-86021 Poitiers, France
| | - Géraldine Allain
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France;
| | - Patrick Bruneval
- Hôpital Européen Georges Pompidou, Service D’anatomie Pathologique, F-75015 Paris, France;
- Faculté de Médecine, Université Paris-Descartes, F-75006 Paris, France
| | - Jacques Tomasi
- CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France;
| | - Michel Pinsard
- CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France;
| | - Thierry Hauet
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Biochimie, F-86021 Poitiers, France
- Fédération Hospitalo-Universitaire SUPORT, F-86000 Poitiers, France
- IBiSA Plateforme ‘Plate-Forme MOdélisation Préclinique—Innovation Chirurgicale et Technologique (MOPICT)’, Domaine Expérimental du Magneraud, F-17700 Surgères, France
- Pr. Thierry HAUET, INSERM U1082, CHU de Poitiers, 2 rue de la Miletrie, CEDEX BP 577, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-48-29; Fax: +33-5-49-44-38-34
| | - Thomas Kerforne
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France;
| |
Collapse
|
11
|
Barrera‐Chimal J, Jaisser F. Vascular and inflammatory mineralocorticoid receptors in kidney disease. Acta Physiol (Oxf) 2020; 228:e13390. [PMID: 31529757 DOI: 10.1111/apha.13390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the kidney can occur outside the aldosterone-sensitive distal nephron in sites including the endothelium, smooth muscle and inflammatory cells. MR activation in these cells has deleterious effects on kidney structure and function by promoting oxidative injury, endothelial dysfunction and stiffness, vascular remodelling and calcification, decreased relaxation and activation of T cells and pro-inflammatory macrophages. Here, we review the data showing the cellular consequences of MR activation in endothelial, smooth muscle and inflammatory cells and how this affects the kidney in pathological situations. The evidence demonstrating a benefit of pharmacological or genetic MR inhibition in various models of kidney disease is also discussed.
Collapse
Affiliation(s)
- Jonatan Barrera‐Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal Unidad de Investigación en Medicina Traslacional Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez Instituto de Investigaciones Biomédicas Mexico City Mexico
| | - Frederic Jaisser
- INSERM U1116 Clinical Investigation Centre Lorraine University Vandoeuvre‐lès‐Nancy France
- INI‐CRCT (Cardiovascular and Renal Clinical Trialists) F‐CRIN Network Nancy France
- INSERM UMRS 1138 Centre de Recherche des Cordeliers Sorbonne University Paris Descartes University Paris France
| |
Collapse
|