1
|
Dos Santos JCC, Mano GBC, da Cunha Barreto-Vianna AR, Garcia TFM, de Vasconcelos AV, Sá CSG, de Souza Santana SL, Farias AGP, Seimaru B, Lima MPP, Goes JVC, Gusmão CTP, Junior HLR. The Molecular Impact of Glucosylceramidase Beta 1 (Gba1) in Parkinson's Disease: a New Genetic State of the Art. Mol Neurobiol 2024; 61:6754-6770. [PMID: 38347286 DOI: 10.1007/s12035-024-04008-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting 2-3% of those aged over 65, characterized by motor symptoms like slow movement, tremors, and muscle rigidity, along with non-motor symptoms such as anxiety and dementia. Lewy bodies, clumps of misfolded proteins, contribute to neuron loss in PD. Mutations in the GBA1 gene are considered the primary genetic risk factor of PD. GBA1 mutations result in decreased activity of the lysosomal enzyme glucocerebrosidase (GCase) resulting in α-synuclein accumulation. We know that α-synuclein aggregation, lysosomal dysfunction, and endoplasmic reticulum disturbance are recognized factors to PD susceptibility; however, the molecular mechanisms connecting GBA1 gene mutations to increased PD risk remain partly unknown. Thus, in this narrative review conducted according to a systematic review method, we aimed to present the main contributions arising from the molecular impact of the GBA1 gene to the pathogenesis of PD providing new insights into potential impacts for advances in the clinical care of people with PD, a neurological disorder that has contributed to the substantial increase in the global burden of disease accentuated by the aging population. In summary, this narrative review highlights the multifaceted impact of GBA1 mutations in PD, exploring their role in clinical manifestations, genetic predispositions, and molecular mechanisms. The review emphasizes the importance of GBA1 mutations in both motor and non-motor symptoms of PD, suggesting broader therapeutic and management strategies. It also discusses the potential of CRISPR/Cas9 technology in advancing PD treatment and the need for future research to integrate these diverse aspects for improved diagnostics and therapies.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Christus University Center, UNICHRISTUS, Fortaleza, Ceara, Brazil.
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará, Fortaleza, Ceara, Brazil.
| | | | | | - Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande Do Norte, Caico, Rio Grande Do Norte, Brazil
| | | | | | | | - Ana Gabriela Ponte Farias
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Beatriz Seimaru
- Barão de Mauá University Center, CBM, Ribeirão Preto, São Paulo, Brazil
| | | | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
2
|
Zhao P, Wu T, Tian Y, You J, Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv Drug Deliv Rev 2024; 209:115323. [PMID: 38653402 DOI: 10.1016/j.addr.2024.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 200000, China
| | - Jia You
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Dzamko N. New Antibodies to Advance Glucocerebrosidase Research. JOURNAL OF PARKINSON'S DISEASE 2024; 14:79-80. [PMID: 38251065 PMCID: PMC10836538 DOI: 10.3233/jpd-249000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Affiliation(s)
- Nicolas Dzamko
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Castillo-Rangel C, Marin G, Hernández-Contreras KA, Vichi-Ramírez MM, Zarate-Calderon C, Torres-Pineda O, Diaz-Chiguer DL, De la Mora González D, Gómez Apo E, Teco-Cortes JA, Santos-Paez FDM, Coello-Torres MDLÁ, Baldoncini M, Reyes Soto G, Aranda-Abreu GE, García LI. Neuroinflammation in Parkinson's Disease: From Gene to Clinic: A Systematic Review. Int J Mol Sci 2023; 24:5792. [PMID: 36982866 PMCID: PMC10051221 DOI: 10.3390/ijms24065792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease whose progression and clinical characteristics have a close bidirectional and multilevel relationship with the process of neuroinflammation. In this context, it is necessary to understand the mechanisms involved in this neuroinflammation-PD link. This systematic search was, hereby, conducted with a focus on the four levels where alterations associated with neuroinflammation in PD have been described (genetic, cellular, histopathological and clinical-behavioral) by consulting the PubMed, Google Scholar, Scielo and Redalyc search engines, including clinical studies, review articles, book chapters and case studies. Initially, 585,772 articles were included, and, after applying the inclusion and exclusion criteria, 84 articles were obtained that contained information about the multilevel association of neuroinflammation with alterations in gene, molecular, cellular, tissue and neuroanatomical expression as well as clinical-behavioral manifestations in PD.
Collapse
Affiliation(s)
- Carlos Castillo-Rangel
- Neurosurgery Department, “Hospital Regional 1° de Octubre”, Institute of Social Security and Services for State Workers (ISSSTE), México City 07300, Mexico; (C.C.-R.); (D.L.D.-C.)
| | - Gerardo Marin
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Karla Aketzalli Hernández-Contreras
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Micheel Merari Vichi-Ramírez
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Cristofer Zarate-Calderon
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Osvaldo Torres-Pineda
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Dylan L. Diaz-Chiguer
- Neurosurgery Department, “Hospital Regional 1° de Octubre”, Institute of Social Security and Services for State Workers (ISSSTE), México City 07300, Mexico; (C.C.-R.); (D.L.D.-C.)
| | - David De la Mora González
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Erick Gómez Apo
- Pathology Department, “Hospital General de México”, Dr. Eduardo Liceaga, México City 06720, Mexico; (E.G.A.); (J.A.T.-C.)
| | - Javier Alejandro Teco-Cortes
- Pathology Department, “Hospital General de México”, Dr. Eduardo Liceaga, México City 06720, Mexico; (E.G.A.); (J.A.T.-C.)
| | - Flor de María Santos-Paez
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | | | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires C1052AAA, Argentina;
| | | | - Gonzalo Emiliano Aranda-Abreu
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Luis I. García
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| |
Collapse
|
5
|
Filippone A, Esposito E, Mannino D, Lyssenko N, Praticò D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol Ther 2022; 238:108178. [PMID: 35351465 PMCID: PMC9510148 DOI: 10.1016/j.pharmthera.2022.108178] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022]
Abstract
Defects in cellular functions related to altered protein homeostasis and associated progressive accumulation of pathological intracellular material is a critical process involved in the pathogenesis of many neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Autophagy is an essential mechanism that ensures neuronal health by removing long-lived proteins or defective organelles and by doing so prevents cell toxicity and death within the central nervous system. Abundant evidence has shown that neuronal autophagy pathways are altered in Alzheimer's disease, Parkinson's disease and traumas of the central nervous system including Spinal Cord Injury and Traumatic Brain Injury. In this review, we aimed to summarize the latest studies on the role that altered neuronal autophagy plays in brain health and these pathological conditions, and how this knowledge can be leveraged for the development of novel therapeutics against them.
Collapse
Affiliation(s)
- Alessia Filippone
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Nicholas Lyssenko
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Tang X, Li H, An B, Ma H, Huang N, Li X. Transplantation of human cord blood-derived multipotent stem cells (CB-SCs) enhances the recovery of Parkinson in rats. Transpl Immunol 2022; 75:101701. [PMID: 36038047 DOI: 10.1016/j.trim.2022.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Earlier published research showed that cord blood-derived multipotent stem cells (CB-SCs) exhibited the intrinsic expression of specific transcription factors (e.g., En1, Nurr1 and Wnt1) and seems to be induced to form dopamine neurons in vitro. In this research, we further investigated the therapeutic potential of CB-SCs in 6-hydroxydopamine lesioned Parkinson's disease (PD) rats. The results of PCR analysis showed that CB-SCs could express transcription factors associated with pluripotentiality and dopaminergic differentiation (e.g., Klf4, c-Myc, Nanog, Sox2, Ngn2, and Nurr1). After being transplanted into the striatum and substantia nigra of PD rats, most of CB-SCs (>90%) developed a fate commitment to dopaminergic differentiation, expressed as the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). The improvement effect of cell transplantation on dyskinesia in PD rats was better than that in sham control group. Moreover, higher levels of TH protein in brain homogenates further demonstrated that there were more surviving dopamine neurons in the brain of transplanted PD rats. Study concluds, CB SCS transplantation could promote the regeneration of dopamine neurons and behavioral recovery of PD rats.
Collapse
Affiliation(s)
- Xiaosan Tang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250031, China
| | - Heng Li
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250031, China
| | - Baozeng An
- Department of Psychology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250031, China
| | - Haibo Ma
- Department of Neurology, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China
| | - Nana Huang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250031, China
| | - Xiaohong Li
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250031, China.
| |
Collapse
|
7
|
A versatile fluorescence-quenched substrate for quantitative measurement of glucocerebrosidase activity within live cells. Proc Natl Acad Sci U S A 2022; 119:e2200553119. [PMID: 35858317 PMCID: PMC9304032 DOI: 10.1073/pnas.2200553119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Loss of activity of the lysosomal glycosidase β-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.
Collapse
|
8
|
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15070823. [PMID: 35890122 PMCID: PMC9325019 DOI: 10.3390/ph15070823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Collapse
|
9
|
Zheng W, Fan D. Glucocerebrosidase Mutations Cause Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease: Pathogenesis and Therapeutic Implications. Front Aging Neurosci 2022; 14:851135. [PMID: 35401150 PMCID: PMC8984109 DOI: 10.3389/fnagi.2022.851135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by multiple motor and non-motor symptoms. Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), which hydrolyzes glucosylceramide (GlcCer) to glucose and ceramide, are the most important and common genetic PD risk factors discovered to date. Homozygous GBA mutations result in the most common lysosomal storage disorder, Gaucher’s disease (GD), which is classified according to the presence (neuronopathic types, type 2 and 3 GD) or absence (non-neuronopathic type, type 1 GD) of neurological symptoms. The clinical manifestations of PD in patients with GBA mutations are indistinguishable from those of sporadic PD at the individual level. However, accumulating data have indicated that GBA-associated PD patients exhibit a younger age of onset and a greater risk for cognitive impairment and psychiatric symptoms. The mechanisms underlying the increased risk of developing PD in GBA mutant carriers are currently unclear. Contributors to GBA-PD pathogenesis may include mitochondrial dysfunction, autophagy-lysosomal dysfunction, altered lipid homeostasis and enhanced α-synuclein aggregation. Therapeutic strategies for PD and GD targeting mutant GCase mainly include enzyme replacement, substrate reduction, gene and pharmacological small-molecule chaperones. Emerging clinical, genetic and pathogenic studies on GBA mutations and PD are making significant contributions to our understanding of PD-associated pathogenetic pathways, and further elucidating the interactions between GCase activity and neurodegeneration may improve therapeutic approaches for slowing PD progression.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
10
|
Bo RX, Li YY, Zhou TT, Chen NH, Yuan YH. The neuroinflammatory role of glucocerebrosidase in Parkinson's disease. Neuropharmacology 2022; 207:108964. [PMID: 35065083 DOI: 10.1016/j.neuropharm.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
The lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, is a membrane-associated protein catalyzing the cleavage of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Homologous GBA1 mutations cause Gaucher disease (GD) and heterologous mutations cause Parkinson's disease (PD). Importantly, heterologous GBA1 mutations are recognized as the second risk factor of PD. The pathological features of PD are Lewy neurites (LNs) and Lewy bodies (LBs) composed of pathological α-synuclein. Oxidative stress, inflammatory response, autophagic impairment, and α-synuclein accumulation play critical roles in PD pathogenic cascades, but the pathogenesis of PD has not yet been fully elucidated. What's more, PD treatment drugs can only relieve symptoms to a certain extent, but cannot alleviate neurodegenerative progression. Therefore, it's urgent to explore new targets that can alleviate the neurodegenerative process. Deficient GCase can cause lysosomal dysfunction, obstructing the metabolism of α-synuclein. Meanwhile, GCase dysfunction causes accumulation of its substrates, leading to lipid metabolism disorders. Subsequently, astrocytes and microglia are activated, releasing amounts of pro-inflammatory mediators and causing extensive neuroinflammation. All these cascades can induce neuron damage and death, eventually promoting PD pathology. This review aims to summarize these points and the potential of GCase as an original target to provide some ideas for elucidating the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Xue Bo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
El-Battari A, Rodriguez L, Chahinian H, Delézay O, Fantini J, Yahi N, Di Scala C. Gene Therapy Strategy for Alzheimer's and Parkinson's Diseases Aimed at Preventing the Formation of Neurotoxic Oligomers in SH-SY5Y Cells. Int J Mol Sci 2021; 22:11550. [PMID: 34768981 PMCID: PMC8583875 DOI: 10.3390/ijms222111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/17/2023] Open
Abstract
We present here a gene therapy approach aimed at preventing the formation of Ca2+-permeable amyloid pore oligomers that are considered as the most neurotoxic structures in both Alzheimer's and Parkinson's diseases. Our study is based on the design of a small peptide inhibitor (AmyP53) that combines the ganglioside recognition properties of the β-amyloid peptide (Aβ, Alzheimer) and α-synuclein (α-syn, Parkinson). As gangliosides mediate the initial binding step of these amyloid proteins to lipid rafts of the brain cell membranes, AmyP53 blocks, at the earliest step, the Ca2+ cascade that leads to neurodegeneration. Using a lentivirus vector, we genetically modified brain cells to express the therapeutic coding sequence of AmyP53 in a secreted form, rendering these cells totally resistant to oligomer formation by either Aβ or α-syn. This protection was specific, as control mCherry-transfected cells remained fully sensitive to these oligomers. AmyP53 was secreted at therapeutic concentrations in the supernatant of cultured cells, so that the therapy was effective for both transfected cells and their neighbors. This study is the first to demonstrate that a unique gene therapy approach aimed at preventing the formation of neurotoxic oligomers by targeting brain gangliosides may be considered for the treatment of two major neurodegenerative disorders, Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Assou El-Battari
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France; (A.E.-B.); (H.C.); (J.F.); (N.Y.)
| | - Léa Rodriguez
- CUO-Recherche, Département d’ophtalmologie, Faculté de Médecine, Université Laval and Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 0A6, Canada;
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France; (A.E.-B.); (H.C.); (J.F.); (N.Y.)
| | - Olivier Delézay
- Faculté de Médecine, SAINBIOSE INSERM U1059, Campus Santé Innovations, 42270 St. Priest en Jarez, France;
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France; (A.E.-B.); (H.C.); (J.F.); (N.Y.)
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France; (A.E.-B.); (H.C.); (J.F.); (N.Y.)
| | - Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Higgins AL, Toffoli M, Mullin S, Lee CY, Koletsi S, Avenali M, Blandini F, Schapira AH. The remote assessment of parkinsonism supporting ongoing development of interventions in Gaucher disease. Neurodegener Dis Manag 2021; 11:451-458. [PMID: 34666501 DOI: 10.2217/nmt-2021-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in GBA which are causative of Gaucher disease in their biallelic form, are the most common genetic risk factor for Parkinson's disease (PD). The diagnosis of PD relies upon clinically defined motor features which appear after irreversible neurodegeneration. Prodromal symptoms of PD may provide a means to predict latent pathology, years before the onset of motor features. Previous work has reported prodromal features of PD in GBA mutation carriers, however this has been insufficiently sensitive to identify those that will develop PD. The Remote Assessment of Parkinsonism Supporting Ongoing Development of Interventions in Gaucher Disease (RAPSODI GD) study assesses a large cohort of GBA mutation carriers, to aid development of procedures for earlier diagnosis of PD.
Collapse
Affiliation(s)
- Abigail Louise Higgins
- Department of Clinical & Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Marco Toffoli
- Department of Clinical & Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Stephen Mullin
- Institute of Translational and Stratified Medicine, University of Plymouth Peninsula School of Medicine, Plymouth, UK
| | - Chiao-Yin Lee
- Department of Clinical & Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sofia Koletsi
- Department of Clinical & Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Micol Avenali
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anthony Hv Schapira
- Department of Clinical & Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
13
|
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability. Sci Rep 2021; 11:10676. [PMID: 34021231 PMCID: PMC8140113 DOI: 10.1038/s41598-021-90115-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/06/2021] [Indexed: 01/14/2023] Open
Abstract
The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo.
Collapse
|
14
|
den Heijer JM, Kruithof AC, van Amerongen G, de Kam ML, Thijssen E, Grievink HW, Moerland M, Walker M, Been K, Skerlj R, Justman C, Dudgeon L, Lansbury P, Cullen VC, Hilt DC, Groeneveld GJ. A randomized single and multiple ascending dose study in healthy volunteers of LTI-291, a centrally penetrant glucocerebrosidase activator. Br J Clin Pharmacol 2021; 87:3561-3573. [PMID: 33576113 PMCID: PMC8451761 DOI: 10.1111/bcp.14772] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS A mutation in the GBA1 gene is the most common genetic risk factor for developing Parkinson's disease. GBA1 encodes the lysosomal enzyme glucosylceramidase beta (glucocerebrosidase, GCase) and mutations decrease enzyme activity. LTI-291 is an allosteric modulator of GCase, enhancing its activity. These first-in-human studies evaluated the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple ascending doses of LTI-291 in healthy volunteers. METHODS In the single ascending dose (SAD) study, 40 healthy volunteers were randomly assigned to LTI-291 (n = 8 per dose level) or placebo (n = 2 per dose level). Single doses of 3, 10, 30 and 90 mg LTI-291 were investigated. In the multiple ascending dose (MAD) study, 40 healthy middle-aged or elderly volunteers were randomly assigned to LTI-291 (n = 8 per dose level) or placebo (n = 2 per dose level). Fourteen consecutive daily doses of 3, 10, 30 and 60 mg LTI-291 or placebo were administered. In both the SAD and MAD studies, glycosphingolipid levels were measured and a test battery of neurocognitive tasks was performed. RESULTS LTI-291 was generally well tolerated and no deaths or treatment-related SAEs occurred and no subject withdrew from a study due to AEs. Cmax , AUC0-24 and AUC0-inf increased in a dose proportional manner. The median half-life was 28.0 hours after multiple dosing. No dose-dependent glycosphingolipid changes occurred. No neurocognitive adverse effects were detected. CONCLUSIONS These first-in-human studies demonstrated that LTI-291 was well tolerated when given orally once daily for 14 consecutive days. This supports the continued clinical development and the exploration of LTI-291 effects in a GBA1-mutated Parkinson population.
Collapse
Affiliation(s)
- Jonas M den Heijer
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | - Annelieke C Kruithof
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | - Guido van Amerongen
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Eva Thijssen
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Kees Been
- Lysosomal Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | - Peter Lansbury
- Lysosomal Therapeutics Inc., Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Dana C Hilt
- Lysosomal Therapeutics Inc., Cambridge, MA, USA
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
15
|
Garcia EJ, Sidransky E. Genetics provides new individualized therapeutic targets for Parkinson's disease. Neural Regen Res 2021; 16:994-995. [PMID: 33229749 PMCID: PMC8178788 DOI: 10.4103/1673-5374.297076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Eric Joshua Garcia
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Tayebi N, Lopez G, Do J, Sidransky E. Pro-cathepsin D, Prosaposin, and Progranulin: Lysosomal Networks in Parkinsonism. Trends Mol Med 2020; 26:913-923. [PMID: 32948448 DOI: 10.1016/j.molmed.2020.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Mutations in GBA1, the gene encoding the lysosomal hydrolase glucocerebrosidase (GCase), are a risk factor for parkinsonism. Pursuing the potential mechanisms underlying this risk in aging neurons, we propose a new network uniting three major lysosomal proteins: (i) cathepsin D (CTSD), which plays a major role in α-synuclein (SNCA) degradation and prosaposin (PSAP) cleavage; (ii) PSAP, essential for GCase activation and progranulin (PGRN) transport; and (iii) PGRN, impacting lysosomal biogenesis, PSAP trafficking, and CTSD maturation. We hypothesize that alterations to this network and associated receptors modify lysosomal function and subsequently impact both SNCA degradation and GCase activity. By exploring the interactions between this protein trio and each of their respective transporters and receptors, we may identify secondary risk factors that provide insight into the relationship between these lysosomal proteins, GCase, and SNCA, and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Nahid Tayebi
- Medical Genetics Branch, National Human Genetics Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genetics Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Do
- Medical Genetics Branch, National Human Genetics Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genetics Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Fabbri M, Perez-Lloret S, Rascol O. Therapeutic strategies for Parkinson's disease: promising agents in early clinical development. Expert Opin Investig Drugs 2020; 29:1249-1267. [PMID: 32853086 DOI: 10.1080/13543784.2020.1814252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION To date, no drug has demonstrated clinically indisputable neuroprotective efficacy in Parkinson's disease (PD). We also have no effective symptomatic treatment for disabling symptoms such as balance problems, and dementia, and we need to improve the efficacy and safety profile of drugs currently used in the management of motor complications. AREAS COVERED We examine the agents which appear to have most therapeutic promise based on concepts, feasibility in a reasonable time frame, and available clinical data and place an emphasis on disease-modifying treatments. PUBMED and Clinicaltrials.gov databases were searched for Phase I and II randomized trials for symptomatic or disease-modifying treatments considering only studies that began since 2010 or that were completed after 2015, up to 30 April 2020. EXPERT OPINION Encouraging progress has been made in our understanding of molecular pathways. We find passive immunization approaches against α-synuclein, LRRK2 kinase inhibitors, and treatment that can increase GCase activity, which have shown some efficacy on both GBA-mutated and non-mutated PD patients. The recognition of non-dopaminergic impairment and the prominent role of non-motor symptoms have prompted the development of trials on compounds that could tackle different neurotransmitter systems. Future approaches will encompass more personalized medicine strategies based on molecular signatures and non-motor phenotypes.
Collapse
Affiliation(s)
- Margherita Fabbri
- Clinical Investigation Center CIC1436, Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre and NeuroToul Center of Excellence in Neurodegeneration (COEN) of Toulouse; INSERM, University of Toulouse 3, CHU of Toulouse , Toulouse, France
| | - Santiago Perez-Lloret
- Center for Health Sciences Research, National Research Council (ININCA-UAI-CONICET) , Buenos Aires, Argentina.,Department of Physiology, School of Medicine, University of Buenos Aires (UBA) , Buenos Aires, Argentina
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre and NeuroToul Center of Excellence in Neurodegeneration (COEN) of Toulouse; INSERM, University of Toulouse 3, CHU of Toulouse , Toulouse, France
| |
Collapse
|
18
|
Antonini A, Bravi D, Sandre M, Bubacco L. Immunization therapies for Parkinson's disease: state of the art and considerations for future clinical trials. Expert Opin Investig Drugs 2020; 29:685-695. [PMID: 32419521 DOI: 10.1080/13543784.2020.1771693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Advances in the understanding of the mechanisms that lead to Lewy body pathology in Parkinson's disease (PD) have yielded rationales for tackling neurodegeneration associated with α-Synuclein (α-Syn) misfolding, aggregation, and/or its related spreading. Immunization therapies targeting distinct α-Syn epitopes (conformational and linear) that aim to limit extracellular spread in the brain are now in development. Completed and ongoing studies have enrolled early PD patients without considering individual clinical differences and assume a common pathogenetic mechanism of the disease. Such approaches have led to disappointing results; this is most likely attributed to trial methodology and inadequate patient selection rather than underlying target biology. AREAS COVERED This review presents the status of immunotherapies that target α-Syn epitopes in PD. Mechanisms associated with neurodegeneration are examined along with the limitations of current antibody research strategies and ongoing clinical trials. Patient stratification based on disease progression is discussed and the article culminates with author suggestions on how to progress future clinical trials. EXPERT OPINION The efficacy of passive and active immunotherapies is inadequately evaluated in ongoing clinical trials where participating patients have various progression rates, genetic backgrounds, and clinical phenotypes. Future disease-modifying studies can overcome these limitations by enrolling patients based on progression pathways and genotypic contribution to disease manifestations.
Collapse
Affiliation(s)
- Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua , Padua, Italy
| | - Daniele Bravi
- SixDegrees Health Care Consulting Inc , Chicago, USA
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua , Padua, Italy.,PNC Padua Neuroscience Center, University of Padua , Padua, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua , Padua, Italy
| |
Collapse
|