1
|
Liu BM, Hayes AW. Mechanisms and Assessment of Genotoxicity of Metallic Engineered Nanomaterials in the Human Environment. Biomedicines 2024; 12:2401. [PMID: 39457713 PMCID: PMC11504605 DOI: 10.3390/biomedicines12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered nanomaterials (ENMs) have a broad array of applications in agriculture, engineering, manufacturing, and medicine. Decades of toxicology research have demonstrated that ENMs can cause genotoxic effects on bacteria, mammalian cells, and animals. Some metallic ENMs (MENMs), e.g., metal or metal oxide nanoparticles TiO2 and CuO, induce genotoxicity via direct DNA damage and/or reactive oxygen species-mediated indirect DNA damage. There are various physical features of MENMs that may play an important role in promoting their genotoxicity, for example, size and chemical composition. For a valid genotoxicity assessment of MENMs, general considerations should be given to various factors, including, but not limited to, NM characterization, sample preparation, dosing selection, NM cellular uptake, and metabolic activation. The recommended in vitro genotoxicity assays of MENMs include hprt gene mutation assay, chromosomal aberration assay, and micronucleus assay. However, there are still knowledge gaps in understanding the mechanisms underlying the genotoxicity of MENMs. There are also a variety of challenges in the utilization and interpretation of the genotoxicity assessment assays of MENMs. In this review article, we provide mechanistic insights into the genotoxicity of MENMs in the human environment. We review advances in applying new endpoints, biomarkers, and methods to the genotoxicity assessments of MENMs. The guidance of the United States, the United Kingdom, and the European Union on the genotoxicity assessments of MENMs is also discussed.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| | - A. Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL 33612, USA
- Institute for Integrated Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Xu Y, Qiu Z, Chen J, Huang L, Zhang J, Lin J. LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathway in vitro and in vivo. Drug Deliv Transl Res 2024; 14:2003-2018. [PMID: 38161194 DOI: 10.1007/s13346-023-01505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to participate in neuroblastoma cisplatin resistance and tumorigenesis. LncRNA LINC00460 was previously reported to play a critical regulatory role in many cancer development. Nevertheless, its role in modulating neuroblastoma cisplatin resistance has not been explored till now. Cisplatin-resistant neuroblastoma cell lines were established by exposing neuroblastoma cell lines to progressively increasing concentrations of cisplatin for 6 months. LINC00460, microRNA (miR)-149-5p, and delta-like ligand 1 (DLL1) mRNA expression was measured through RT-qPCR. The protein levels of DLL1, epithelial-to-mesenchymal transition (EMT) markers, and the Notch signaling-related molecules were measured via western blotting. The IC50 value for cisplatin, cell growth, metastasis and apoptosis were analyzed in cisplatin-resistant neuroblastoma cells. The binding between LINC00460 (or DLL1) and miR-149-5p was validated through dual-luciferase reporter assay. The murine xenograft model was established to perform in vivo assays. LINC00460 and DLL1 levels were elevated, while miR-149-5p level was reduced in cisplatin-resistant neuroblastoma cells. LINC00460 depletion attenuated IC50 values for cisplatin, weakened cell growth, metastasis, and EMT, and enhanced apoptosis in cisplatin-resistant neuroblastoma cells. Mechanically, LINC00460 sponged miR-338-3p to increase DLL1 level, thereby activating Notch signaling pathway. DLL1 overexpression antagonized LINC00460 silencing-induced suppression on neuroblastoma cell cisplatin resistance and malignant behaviors, while such effects were further reversed by treatment with DAPT, the inhibitor of Notch pathway. Additionally, LINC00460 knockdown further augmented cisplatin-induced impairment on tumor growth in vivo. LINC00460 contributes to neuroblastoma cisplatin resistance and tumorigenesis through miR-149-5p/DLL1/Notch pathway, providing new directions to improve the therapeutic efficacy of chemotherapy drugs applied in patients with neuroblastoma.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Zhixin Qiu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Jinwen Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Lihong Huang
- The First Clinical Medical School, Fujian Medical University, Fuzhou, 350005, China
| | - Jiaqi Zhang
- The First Clinical Medical School, Fujian Medical University, Fuzhou, 350005, China
| | - Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China.
| |
Collapse
|
3
|
Wu X, Mi T, Jin L, Ren C, Wang J, Zhang Z, Liu J, Wang Z, Guo P, He D. Dual roles of HK3 in regulating the network between tumor cells and tumor-associated macrophages in neuroblastoma. Cancer Immunol Immunother 2024; 73:122. [PMID: 38714539 PMCID: PMC11076449 DOI: 10.1007/s00262-024-03702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/13/2024] [Indexed: 05/10/2024]
Abstract
Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoyin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
4
|
Han Y, Li B, Cheng J, Zhou D, Yuan X, Zhao W, Zhang D, Zhang J. Construction of methylation driver gene-related prognostic signature and development of a new prognostic stratification strategy in neuroblastoma. Genes Genomics 2024; 46:171-185. [PMID: 38180715 DOI: 10.1007/s13258-023-01483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Aberrant DNA methylation is one of the major epigenetic alterations in neuroblastoma. OBJECTIVE Exploring the prognostic significance of methylation driver genes in neuroblastoma could help to comprehensively assess patient prognosis. METHODS After identifying methylation driver genes (MDGs), we used the LASSO algorithm and stepwise Cox regression to construct methylation driver gene-related risk score (MDGRS), and evaluated its predictive performance by multiple methods. By combining risk grouping and MDGRS grouping, we developed a new prognostic stratification strategy and explored the intrinsic differences between the different groupings. RESULTS We identified 44 stably expressed MDGs in neuroblastoma. MDGRS showed superior predictive performance in both internal and external cohorts and was strongly correlated with immune-related scores. MDGRS can be an independent prognostic factor for neuroblastoma, and we constructed the nomogram to facilitate clinical application. Based on the new prognostic stratification strategy, we divided the patients into three groups and found significant differences in overall prognosis, clinical characteristics, and immune infiltration between the different subgroups. CONCLUSION MDGRS was an accurate and promising tool to facilitate comprehensive pre-treatment assessment. And the new prognostic stratification strategy could be helpful for clinical decision making.
Collapse
Affiliation(s)
- Yahui Han
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Biyun Li
- Department of Pediatric Hematology Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Cheng
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Diming Zhou
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiafei Yuan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhao
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
John P, Sudandiradoss C. A comprehensive integrated gene network construction to explore the essential role of Notch 1 in lung adenocarcinoma (LUAD). J Biomol Struct Dyn 2024:1-13. [PMID: 38282473 DOI: 10.1080/07391102.2024.2306501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
The heterogeneous biological landscape of non-small cell lung cancer (NSCLC) is largely attributed to the activation of Notch signalling pathway. Among the Notch family transmembrane proteins, neurogenic locus notch homolog protein1 (NOTCH1) is a putative oncogene in NSCLC which activates the pathway as negative prognostic factor. This study aims to explore integrated network approach in lung adenocarcinoma (LUAD) especially linked to the notch pathway and its receptors. Our gene set enrichment analysis reveals the key Notch pathway genes are predominantly down regulated in LUAD. There were 675 genes with a total of 6517 functional interactions and 6 densely connected clusters of 38 miRNAs, 84 transcription factors with 156 edges identified through network construction. Here we report five key genes namely NOTCH1, CDH1, ERBB2, GAPDH and COL1A1 significantly enriched in Notch pathway which are further validated through the KM plot, box plots, stage plots and TIMER analysis. In addition, the NOTCH1 receptor is strongly linked to the immune checkpoint inhibitor CD274 (PD-L1) and can be considered as prognostic marker and tumour suppressor gene in LUAD which surely provide the basis for early diagnosis and futuristic immunotherapeutic targets for LUAD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Wang ZN, Zhang Y, Sun J, Zhao ZZ, Wang S, Yang C. The prognostic and predictive value of plasma D-dimer in children with neuroblastoma: a 7-year retrospective analysis at a single institution. Ann Surg Treat Res 2023; 105:148-156. [PMID: 37693287 PMCID: PMC10485353 DOI: 10.4174/astr.2023.105.3.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Elevated plasma D-dimer level is a poor prognostic factor for many solid tumors. However, limited research has been conducted on D-dimer in children with neuroblastoma (NB), and its clinical significance remains unclear. The present study investigated the clinical and prognostic significance of D-dimer in pediatric NB patients. Methods A retrospective analysis of all newly admitted NB patients was conducted from January 2014 to December 2020. Baseline clinicopathological features, preoperative laboratory parameters, and follow-up information were collected. Univariate and multivariate analyses were performed to determine the relationship between D-dimer level, clinical features, and the prognostic value. Results Among 266 patients, the median value of D-dimer was 2.98 ng/mL, of which 132 patients showed elevated D-dimer levels before surgery (>2.98 ng/mL). Univariate analysis revealed that elevated D-dimer was significantly associated with age, hemoglobin, neutrophil-to-lymphocyte ratio, neuron-specific enolase, 24-hour vanillylmandelic acid, overall survival, and so on (P < 0.05). Patients with elevated D-dimer levels had shorter median overall survival time when compared with normal D-dimer levels (P = 0.01). The prognosis was better in patients with normal D-dimer levels when combined with lower age, ganglioneuroblastoma tumor type, lower stage on International Neuroblastoma Staging System, low-risk group, and without bone metastasis or bone marrow metastasis. The continuous increase of D-dimer level after treatment indicated tumor recurrence or progression. Conclusion A high D-dimer level is associated with low overall survival, and an elevated D-dimer level after treatment indicates tumor recurrence and progression. D-dimer can be used as one of the evaluation factors for NB treatment or prognosis.
Collapse
Affiliation(s)
- Zhen-Ni Wang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National International Science and Technology Cooperation Base for Critical Children’s Developmental Diseases, Chongqing, China
- Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National International Science and Technology Cooperation Base for Critical Children’s Developmental Diseases, Chongqing, China
- Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jian Sun
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National International Science and Technology Cooperation Base for Critical Children’s Developmental Diseases, Chongqing, China
- Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhen-Zhen Zhao
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National International Science and Technology Cooperation Base for Critical Children’s Developmental Diseases, Chongqing, China
- Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National International Science and Technology Cooperation Base for Critical Children’s Developmental Diseases, Chongqing, China
- Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chao Yang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National International Science and Technology Cooperation Base for Critical Children’s Developmental Diseases, Chongqing, China
- Key Laboratory of Child Developmental Diseases Research of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
7
|
Ceci A, Conte R, Didio A, Landi A, Ruggieri L, Giannuzzi V, Bonifazi F. Target therapy for high-risk neuroblastoma treatment: integration of regulatory and scientific tools is needed. Front Med (Lausanne) 2023; 10:1113460. [PMID: 37521350 PMCID: PMC10377668 DOI: 10.3389/fmed.2023.1113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Several new active substances (ASs) targeting neuroblastoma (NBL) are under study. We aim to describe the developmental and regulatory status of a sample of ASs targeting NBL to underline the existing regulatory gaps in product development and to discuss possible improvements. Methods The developmental and regulatory statuses of the identified ASs targeting NBL were investigated by searching for preclinical studies, clinical trials (CTs), marketing authorizations, pediatric investigation plans (PIPs), waivers, orphan designations, and other regulatory procedures. Results A total of 188 ASs were identified. Of these, 55 were considered 'not under development' without preclinical or clinical studies. Preclinical studies were found for 115 ASs, of which 54 were associated with a medicinal product. A total of 283 CTs (as monotherapy or in combination) were identified for 70 ASs. Of these, 52% were at phases 1, 1/2, and 2 aimed at PK/PD/dosing activity. The remaining ones also included efficacy. Phase 3 studies were limited. Studies were completed for 14 ASs and suspended for 11. The highest rate of ASs involved in CTs was observed in the RAS-MAPK-MEK and VEGF groups. A total of 37 ASs were granted with a PIP, of which 14 involved NBL, 41 ASs with a waiver, and 18 ASs with both PIPs and waivers, with the PIP covering pediatric indications different from the adult ones. In almost all the PIPs, preclinical studies were required, together with early-phase CTs often including efficacy evaluation. Two PIPs were terminated because of negative study results, and eight PIPs are in progress. Variations in the SmPC were made for larotrectinib sulfate/Vitrakvi® and entrectinib/Rozlytrek® with the inclusion of a new indication. For both, the related PIPs are still ongoing. The orphan designation has been largely adopted, while PRIME designation has been less implemented. Discussion Several ASs entered early phase CTs but less than one out of four were included in a regulatory process, and only two were granted a pediatric indication extension. Our results confirm that it is necessary to identify a more efficient, less costly, and time-consuming "pediatric developmental model" integrating predictive preclinical study and innovative clinical study designs. Furthermore, stricter integration between scientific and regulatory efforts should be promoted.
Collapse
Affiliation(s)
- Adriana Ceci
- Research Department, Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Aravindan N, Natarajan M, Somasundaram DB, Aravindan S. Chemoprevention of neuroblastoma: progress and promise beyond uncertainties. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:9. [PMID: 38249515 PMCID: PMC10798790 DOI: 10.20517/2394-4722.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and comprises one-tenth of all childhood cancer deaths. The current clinical therapy for this deadly disease is multimodal, involving an induction phase with alternating regimens of high-dose chemotherapeutic drugs and load reduction surgery; a consolidation phase with more intensive chemotherapy, radiotherapy, and stem cell transplant; and a maintenance phase with immunotherapy and immune-activating cytokine treatment. Despite such intensive treatment, children with neuroblastoma have unacceptable life quality and survival, warranting preventive measures to regulate the cellular functions that orchestrate tumor progression, therapy resistance, metastasis, and tumor relapse/recurrence. Globally, active efforts are underway to identify novel chemopreventive agents, define their mechanism(s) of action, and assess their clinical benefit. Some chemoprevention strategies (e.g., retinoids, difluoromethylornithine) have already been adopted clinically as part of maintenance phase therapy. Several agents are in the pipeline, while many others are in preclinical characterization. Here we review the classes of chemopreventive agents investigated for neuroblastoma, including cellular events targeted, mode(s) of action, and the level of development. Our review: (i) highlights the pressing need for new and improved chemopreventive strategies for progressive neuroblastoma; (ii) lists the emerging classes of chemopreventive agents for neuroblastoma; and (iii) recognizes the relevance of targeting dynamically evolving hallmark functions of tumor evolution (e.g., survival, differentiation, lineage transformation). With recent gains in the understanding of tumor evolution processes and preclinical and clinical efforts, it is our strong opinion that effective chemopreventive strategies for aggressive neuroblastoma are a near reality.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Mohan Natarajan
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
9
|
Silencing of Circ_0135889 Restrains Proliferation and Tumorigenicity of Human Neuroblastoma Cells. J Surg Res 2022; 279:135-147. [PMID: 35772185 DOI: 10.1016/j.jss.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Neuroblastoma (NB) is the most common extracranial solid tumor in infants and young children. Circular ribonucleic acid (RNA) hsa_circ_0135889 (circ_0135889; hsa_circ argonaute 2 _001) is highly expressed in multiple cancer tissues, including NB. However, its role in tumor progression of NB was unclear. METHODS Real-time quantitative polymerace chain reaction was used to detect RNA expression, and western blotting, or immunohistochemistry was used to measure protein expression. Functional experiments were performed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 5-Ethynyl-2'- deoxyuridine, Annexin V-fluorescein isothiocyanate/propidium iodide, and transwell assays, as well as xenograft tumor model. The intermolecular interaction was predicted by online databases and confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS Circ_0135889 and neuronal differentiation 1 (NEUROD1) were upregulated whilst microRNA (miR)-127-5p, was downregulated in NB tumors and immortalized NB cells. Silencing of circ_0135889 could suppress cell proliferation, migration and invasion, but enhance apoptosis rate of NB cells in vitro. More importantly, circ_0135889 depletion inhibited xenograft tumor growth of NB cells. Circ_0135889 was a sponge for miR-127-5p, and inhibition of miR-127-5p counteracted the inhibitory impact of circ_0135889 knockdown on the malignant behaviors of NB cells. Moreover, NEUROD1 was a direct target of miR-127-5p, and miR-127-5p exerted the anti-tumor role in NB cells by targeting NEUROD1. Furthermore, circ_0135889 regulated NEUROD1expression by sponging miR-127-5p. CONCLUSIONS Circ_0135889 promoted the tumorigenicity of NB by regulating miR-127-5p/NEUROD1 axis, which might provide a promising therapeutic target for NB.
Collapse
|
10
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
11
|
Tang J, Liu F, Huang D, Zhao C, Liang J, Wang F, Zeng J, Zhang M, Zhai X, Li L. circ0125803 facilitates tumor progression by sponging miR-197-5p and upregulating E2F1 in neuroblastoma. Pathol Res Pract 2022; 233:153857. [PMID: 35358781 DOI: 10.1016/j.prp.2022.153857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are one type of RNAs with many different functions. circRNAs are very crucial in human malignancy progression. However, few studies have investigated the function and exact mechanism of circRNAs in neuroblastoma. In the current study, we investigated the biological function of circ0125803 in the proliferation and metastasis of neuroblastoma. METHODS A high-throughput circRNA microarray sequencing was conducted to screen differentially expressed circRNAs and in neuroblastoma. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of circRNA and miRNA. RNA immunoprecipitation and dual luciferase reporter experiments were both conducted to investigate the molecular interaction mechanism of circ0125803 in neuroblastoma. RESULTS We identified hsa_circ_0125803 (circ0125803) as an extremely upregulated circRNA in neuroblastoma samples. Knockdown of circ0125803 significantly decreased the growth rate and invasion rate in neuroblastoma. Our data demonstrated upregulation of circ0125803 promotes the neuroblastoma progression by blocking miR-197-5p and upregulating E2F1 expression. CONCLUSION This study uncovered the biological function of the circ0125803-miR-197-5p-E2F1 axis in neuroblastoma metastasis and growth.
Collapse
Affiliation(s)
- Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Feng Liu
- Cancer Research Institute, Hengyang Medical School of University of South China, Hengyang, China
| | - Dongmei Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Congling Zhao
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianghua Liang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Fenghua Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiahang Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Meilan Zhang
- Cancer Research Institute, Hengyang Medical School of University of South China, Hengyang, China
| | - Xiaohui Zhai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China.
| | - Le Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
12
|
Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, Zhou J. Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors. Front Genet 2022; 12:820936. [PMID: 35116058 PMCID: PMC8804321 DOI: 10.3389/fgene.2021.820936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and are widely distributed in eukaryotes, conserved and stable as well as tissue-specific. Malignant solid tumors pose a serious health risk to children and are one of the leading causes of pediatric mortality. Studies have shown that circRNAs play an important regulatory role in the development of childhood malignant solid tumors, hence are potential biomarkers and therapeutic targets for tumors. This paper reviews the biological characteristics and functions of circRNAs as well as the research progress related to childhood malignant solid tumors.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of ENT, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| |
Collapse
|
13
|
Selected polyoxopalladates as promising and selective antitumor drug candidates. J Biol Inorg Chem 2021; 26:957-971. [PMID: 34549367 DOI: 10.1007/s00775-021-01905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023]
Abstract
Polyoxo-noble-metalates (PONMs), a class of molecular noble metal-oxo nanoclusters that combine features of both polyoxometalates and noble metals, are a promising platform for the development of next-generation antitumor metallodrugs. This study aimed to evaluate the antitumor potential against human neuroblastoma cells (SH-SY5Y), as well as toxicity towards healthy human peripheral blood cells (HPBCs), of five polyoxopalladates(II): (Na8[Pd13As8O34(OH)6]·42H2O (Pd13), Na4[SrPd12O6(OH)3(PhAsO3)6(OAc)3]·2NaOAc·32H2O (SrPd12), Na6[Pd13(AsPh)8O32]·23H2O (Pd13L), Na12[SnO8Pd12(PO4)8]·43H2O (SnPd12), and Na12[PbO8Pd12(PO4)8]·38H2O (PbPd12)), as the largest subset of PONMs. A pure inorganic, Pd13, was found as the most potent and selective antineuroblastoma agent with IC50 values (µM) of 7.2 ± 2.2 and 4.4 ± 1.2 for 24 and 48 h treatment, respectively, even lower than cisplatin (28.4 ± 7.4 and 11.6 ± 0.8). The obtained IC50 values (µM) for 24/48 h treatment with SrPd12 and Pd13L were 75.8 ± 6.7/76.7 ± 22.9 and 63.8 ± 3.6/21.4 ± 10.8, respectively, whereas SnPd12 and PbPd12 did not remarkably affect the SH-SY5Y viability (IC50 > > 100 µM). Pd13 caused depolarisation of inner mitochondrial membrane prior to superoxide ion hyperproduction, followed by caspase activation, DNA fragmentation and cell cycle arrest, all hallmarks of apoptotic cell death, and accompanied by an increase in acidic vesicles content, suggestive of autophagy induction. Importantly, Pd13 demonstrated the antitumor effect at concentrations not cytogenotoxic for normal HPBCs. On the contrary, SrPd12 and Pd13L at concentrations ≥ 1/3 IC50 (24 h) decreased HPBC viability and increased % tail DNA up to 42% and 3.05 times, respectively, related to control. SnPd12 and PbPd12, previously confirmed promising antileukemic agents, did not exhibit cytogenotoxicity to HPBCs, and thus could be regarded as tumor cell specific and selective drug candidates.
Collapse
|
14
|
Ashok G, Miryala SK, Anbarasu A, Ramaiah S. Integrated systems biology approach using gene network analysis to identify the important pathways and new potential drug targets for Neuroblastoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|