1
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024:10.1007/s00424-024-03018-8. [PMID: 39297971 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
2
|
Güleç A, Türkoğlu S, Kocabaş R. The relationship between sphingomyelin and ceramide levels and soft neurological signs in ADHD. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02831-w. [PMID: 39249516 DOI: 10.1007/s00702-024-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD), characterized by attention deficit, hyperactivity, and impulsivity, has recently been associated with lipid metabolism. In particular, the roles of sphingomyelin, ceramide, andgalactosylceramidase in the pathophysiology of ADHD are being investigated. This study aims to explore the relationship between sphingolipid metabolism markers and soft neurological signs (SNS) in children diagnosed with ADHD who are not undergoing medication treatment. A cross-sectional analysis was conducted on 41 children and adolescents aged 7-12 years diagnosed with ADHD and 39 neurotypically developing controls. Plasma levels of ceramide, sphingomyelin, and galactosylceramidase were measuredusing Enzyme-Linked Immunosorbent Assay (ELISA). SNS were assessed using the Physical and Neurological Examination for Soft Signs (PANESS). Statistical analyses included Student's t-tests, Mann-Whitney U tests, and Multivariate Analysis ofCovariance (MANCOVA), along with logistic regression analysis. Plasma levels of ceramide and sphingomyelin in children with ADHD showed significant differences compared to the neurotypically developing control group; however, there were no significant differences in galactosylceramidase levels between the two groups. Positive correlations were found between plasma levels of ceramide and sphingomyelin and the PANESS subscales F1 (Total Gait and Station) and F3 (Total Dysrhythmia). Additionally, logistic regression analysis indicated that high ceramide levels were positively associated with ADHD. This study underscores a significant association between alterations in sphingolipid metabolism (specifically increased levels of ceramide and sphingomyelin) and the presence of SNS in children with ADHD. These findings elucidate the potential role of sphingolipid metabolism in the pathophysiology of ADHD and provide suggestions for future therapeutic research targeting sphingolipid metabolism in the treatment of ADHD.
Collapse
Affiliation(s)
- Ahmet Güleç
- Department of Child and Adolescent Psychiatry, 209th Sk. No:26, 10100 Altıeylül/Balıkesir -Balıkesir Ataturk City Hospital, Gaziosmanpasa, Turkey.
| | - Serhat Türkoğlu
- Department of Child and Adolescent Psychiatry, Selcuk University Faculty of Medicine, Selçuk University Rectorate, Alaeddin Keykubat Campus, Academia District, New Istanbul Street No: 369, Selçuklu-Konya, Postal Code: 42130, Turkey
| | - Ramazan Kocabaş
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuk University, Selçuk University Rectorate, Alaeddin Keykubat Campus, Academia District, New Istanbul Street No: 369, Selçuklu-Konya, Postal Code: 42130, Turkey
| |
Collapse
|
3
|
Hosseini SP, Farivar S, Rezaei R, Tokhanbigli S, Hatami B, Zali MR, Baghaei K. Fibroblast growth factor 2 reduces endoplasmic reticulum stress and apoptosis in in-vitro Non-Alcoholic Fatty Liver Disease model. Daru 2023; 31:29-37. [PMID: 37156902 PMCID: PMC10238349 DOI: 10.1007/s40199-023-00459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Non-Alcoholic fatty liver disease is characterized by the accumulation of excess fat in the liver, chronic inflammation, and cell death, ranging from simple steatosis to fibrosis, and finally leads to cirrhosis and hepatocellular carcinoma. The effect of Fibroblast growth factor 2 on apoptosis and ER stress inhibition has been investigated in many studies. In this study, we aimed to investigate the effect of FGF2 on the NAFLD in-vitro model in the HepG2 cell line. METHODS The in-vitro NAFLD model was first induced on the HepG2 cell line using oleic acid and palmitic acid for 24 h and evaluated by ORO staining and Real-time PCR. The cell line was then treated with various concentrations of fibroblast growth factor 2 for 24 h, total RNA was extracted and cDNA was consequently synthesized. Real-time PCR and flow cytometry was applied to evaluate gene expression and apoptosis rate, respectively. RESULTS It was shown that fibroblast growth factor 2 ameliorated apoptosis in the NAFLD in-vitro model by reducing the expression of genes involved in the intrinsic apoptosis pathway, including caspase 3 and 9. Moreover, endoplasmic reticulum stress was decreased following upregulating the protective ER-stress genes, including SOD1 and PPARα. CONCLUSIONS FGF2 significantly reduced ER stress and intrinsic apoptosis pathway. Our data suggest that FGF2 treatment could be a potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Seyedeh Parisa Hosseini
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Rahimi S, Angaji SA, Majd A, Hatami B, Baghaei K. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. Eur J Pharmacol 2023; 942:175536. [PMID: 36693552 DOI: 10.1016/j.ejphar.2023.175536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.
Collapse
Affiliation(s)
- Shahrzad Rahimi
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Seyyed Abdolhamid Angaji
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran; Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, 1571914911, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.
| |
Collapse
|
5
|
Leal AF, Suarez DA, Echeverri-Peña OY, Albarracín SL, Alméciga-Díaz CJ, Espejo-Mojica ÁJ. Sphingolipids and their role in health and disease in the central nervous system. Adv Biol Regul 2022; 85:100900. [PMID: 35870382 DOI: 10.1016/j.jbior.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Sonia Luz Albarracín
- Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| | - Ángela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
6
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
7
|
Modulation of Neuroinflammation in the Central Nervous System: Role of Chemokines and Sphingolipids. Adv Ther 2017; 34:396-420. [PMID: 28054310 DOI: 10.1007/s12325-016-0474-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/16/2022]
Abstract
Neuroinflammation is a process involved in the pathogenesis of different disorders, both autoimmune, such as neuropsychiatric systemic lupus erythematosus, and degenerative, such as Alzheimer's and Parkinson's disease. In the central nervous system, the local milieu is tightly regulated by different mediators, among which are chemoattractant cytokines, also known as chemokines. These small molecules are able to modulate trafficking of immune cells in the course of nervous system development or in response to tissue damage, and different patterns of chemokine molecule and receptor expression have been described in several neuroinflammatory disorders. In recent years, a number of studies have highlighted a pivotal role of sphingolipids in regulating neuroinflammation. Sphingolipids have different functions, among which are the control of leukocyte egress from lymphonodes into inflamed tissues, the expression of various mediators of inflammation and a direct effect on the cells of the central nervous system as regulators of neuroinflammation. In the future, a better knowledge of these two groups of mediators could provide insight into the pathogenesis of neuroinflammatory disorders and could help develop novel diagnostic tools and therapeutic strategies.
Collapse
|
8
|
Abstract
Neurotrophin stimulation of tropomyosin-related kinase (Trk) and p75 receptors influences cellular processes such as proliferation, growth, differentiation, and other cell-specific functions, as well as regeneration. In contrast to Trk receptors, which have a well-defined trophic role, p75 has activities ranging from trophism to apoptosis. Continued neurotrophin stimulation of differentiating neurons transforms the initially trophic character of p75 signaling into negative growth control and overstimulation leads to apoptosis. This function shift reflects the signaling effects of ceramide that is generated upon stimulation of p75. The use of ceramide signaling by p75 may provide a key to understanding the cell-biological role of p75. The review presents arguments that the control of cell shape formation and cell selection can serve as an organizing principle of p75 signaling. Concurrent stimulation by neurotrophins of p75 and Trk receptors constitutes a dual growth control with antagonistic and synergistic elements aimed at optimal morphological and functional integration of cells and cell populations into their context.
Collapse
Affiliation(s)
- A Blöchl
- Biochemie II, Fakultät Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
9
|
Bassi R, Anelli V, Giussani P, Tettamanti G, Viani P, Riboni L. Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. Glia 2006; 53:621-30. [PMID: 16470810 DOI: 10.1002/glia.20324] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitogenic role of sphingosine-1-phosphate (S1P) and its involvement in basic fibroblast growth factor (bFGF)-induced proliferation were examined in primary cultures of cerebellar astrocytes. Exposure to bFGF resulted in a rapid increase of extracellular S1P formation, bFGF inducing astrocytes to release S1P, but not sphingosine kinase, in the extracellular milieu. The SK inhibitor N,N-dimethylsphingosine inhibited S1P release as well as bFGF-induced growth stimulation. S1P application in quiescent astrocytes caused a dose-dependent increase in DNA synthesis. This gliotrophic effect was induced by a brief exposure to low nanomolar S1P, mimicked by the S1P receptor agonist dihydro-S1P, and inhibited by pertussis toxin (PTX), an inactivator of G(i)/G(o)-proteins. S1P also induced activation of extracellular signal-regulated kinase that was inhibited again by PTX. Moreover, the S1P lyase inhibitor 4-deoxypyridoxine induced the cellular accumulation of S1P but did not affect DNA synthesis. These results support the view that S1P exerted a mitogenic effect on cerebellar astrocytes extracellularly, most likely through cell surface S1P receptors. In agreement, mRNAs for S1P1, S1P2, and S1P3 receptors are expressed in cerebellar astrocytes (Anelli et al., 2005. J Neurochem 92:1204-1215). Ceramide, a negative regulator of astrocyte proliferation and down-regulated by bFGF (Riboni et al., 2002. Cerebellum 1:129-135), efficiently inhibited S1P-induced proliferation. The S1P action appears to be part of an autocrine/paracrine cascade stimulated by bFGF and, together with ceramide down-regulation, essential for astrocytes to respond to bFGF. The results suggest that S1P and bFGF/S1P may play an important role in physiopathological glial proliferation, such as brain development, reactive gliosis and brain tumor formation.
Collapse
Affiliation(s)
- Rosaria Bassi
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, LITA-Segrate, Milan, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Schatter B, Jin S, Löffelholz K, Klein J. Cross-talk between phosphatidic acid and ceramide during ethanol-induced apoptosis in astrocytes. BMC Pharmacol 2005; 5:3. [PMID: 15694004 PMCID: PMC549038 DOI: 10.1186/1471-2210-5-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 02/04/2005] [Indexed: 01/08/2023] Open
Abstract
Background Ethanol inhibits proliferation in astrocytes, an effect that was recently linked to the suppression of phosphatidic acid (PA) formation by phospholipase D (PLD). The present study investigates ethanol's effect on the induction of apoptosis in astrocytes and the formation of ceramide, an apoptotic signal. Evidence is presented that the formation of PA and ceramide may be reciprocally linked during ethanol exposure. Results In cultured rat cortical astrocytes, ethanol (0.3–1 %, v/v) induced nuclear fragmentation and DNA laddering indicative of apoptosis. Concomitantly, in cells prelabeled with [3H]-serine, ethanol caused a dose-dependent, biphasic increase of the [3H]-ceramide/ [3H]-sphingomyelin ratio after 1 and 18 hours of incubation. As primary alcohols such as ethanol and 1-butanol were shown to inhibit the phospholipase D (PLD)-mediated formation of PA, a mitogenic lipid messenger, we tested their effects on ceramide formation. In astrocytes prelabeled with [3H]-serine, ethanol and 1-butanol, in contrast to t-butanol, significantly increased the formation of [3H]-ceramide. Moreover, exogenous PA, added to transiently permeabilized astrocytes, suppressed ethanol-induced [3H]-ceramide formation. Vice versa, addition of C2-ceramide to astrocytes inhibited PLD activity induced by serum or phorbol ester. Conclusion We propose that the formation of ceramide in ethanol-exposed astrocytes is secondary to the disruption of phospholipase D signaling. Ethanol reduces the PA:ceramide ratio in fetal astrocytes, a mechanism which likely participates in ethanol-induced glial apoptosis during brain development.
Collapse
Affiliation(s)
- Beate Schatter
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Shenchu Jin
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Konrad Löffelholz
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Jochen Klein
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas, USA
| |
Collapse
|
11
|
Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T. Expression Cloning of a Human cDNA Restoring Sphingomyelin Synthesis and Cell Growth in Sphingomyelin Synthase-defective Lymphoid Cells. J Biol Chem 2004; 279:18688-93. [PMID: 14976195 DOI: 10.1074/jbc.m401205200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin (SM) synthase has been assumed to be involved in both cell death and survival by regulating pro-apoptotic mediator ceramide and pro-survival mediator diacylglycerol. However, its precise functions are ambiguous due to the lack of molecular cloning of SM synthase gene(s). We isolated WR19L/Fas-SM(-) mouse lymphoid cells, which show a defect of SM at the plasma membrane due to the lack of SM synthase activity and resistance to cell death induced by an SM-directed cytolytic protein lysenin. WR19L/Fas-SM(-) cells were also highly susceptible to methyl-beta-cyclodextrin (MbetaCD) as compared with the WR19L/Fas-SM(+) cells, which are capable of SM synthesis. By expression cloning method using WR19L/Fas-SM(-) cells and MbetaCD-based selection, we have succeeded in cloning of a human cDNA responsible for SM synthase activity. The cDNA encodes a peptide of 413 amino acids named SMS1 (putative molecular mass, 48.6 kDa), which contains a sterile alpha motif domain near the N-terminal region and four predicted transmembrane domains. WR19L/Fas-SM(-) cells expressing SMS1 cDNA (WR19L/Fas-SMS1) restored the resistance against MbetaCD, the accumulation of SM at the plasma membrane, and SM synthesis by transferring phosphocholine from phosphatidylcholine to ceramide. Furthermore, WR19L/Fas-SMS1 cells, as well as WR19L/Fas-SM(-) cells supplemented with exogenous SM, restored cell growth ability in serum-free conditions, where the growth of WR19L/Fas-SM(-) cells was severely inhibited. The results suggest that SMS1 is responsible for SM synthase activity in mammalian cells and plays a critical role in cell growth of mouse lymphoid cells.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
12
|
Viani P, Giussani P, Brioschi L, Bassi R, Anelli V, Tettamanti G, Riboni L. Ceramide in nitric oxide inhibition of glioma cell growth. Evidence for the involvement of ceramide traffic. J Biol Chem 2003; 278:9592-601. [PMID: 12515829 DOI: 10.1074/jbc.m207729200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The treatment of C6 glioma cells with the nitric oxide donor, PAPANONOate ((Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate), resulted in a dose-dependent inhibition of cell proliferation. This was associated to a rapid and significant increase of ceramide levels and was mimicked by treatments that augment cellular ceramide. Metabolic experiments with radioactive sphingosine, serine, and choline showed that nitric oxide strongly reduced the utilization of ceramide for the biosynthesis of both sphingomyelin and glucosylceramide. Nevertheless, nitric oxide did not modify the activity of different enzymes of ceramide metabolism. The possibility that nitric oxide impairs the availability of ceramide for sphingolipid biosynthesis was then investigated. The metabolism of N-hexanoyl-[(3)H]sphingosine demonstrated that nitric oxide did not affect the biosynthesis of N-hexanoyl-[(3)H]sphingolipids but inhibited the metabolic utilization of long chain [(3)H]ceramide, synthesized in the endoplasmic reticulum (ER) from the recycled [(3)H]sphingosine. Moreover, results obtained with fluorescent ceramides, brefeldin A, ATP depletion, as well as in a ceramide transport assay indicate that nitric oxide impairs the traffic of ceramide from ER to Golgi apparatus. All this supports that, in glioma cells, the modulation of ceramide traffic can contribute to the regulation of its intracellular levels and participate in the nitric oxide-activated signaling pathway involved in the control of cell proliferation.
Collapse
Affiliation(s)
- Paola Viani
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, via Fratelli Cervi 93, Segrate, Milan 20090, Italy.
| | | | | | | | | | | | | |
Collapse
|