1
|
Ghanem P, Fatteh M, Kamson DO, Balan A, Chang M, Tao J, Blakeley J, Canzoniero J, Grossman SA, Marrone K, Schreck KC, Anagnostou V. Druggable genomic landscapes of high-grade gliomas. Front Med (Lausanne) 2023; 10:1254955. [PMID: 38143440 PMCID: PMC10749203 DOI: 10.3389/fmed.2023.1254955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Despite the putatively targetable genomic landscape of high-grade gliomas, the long-term survival benefit of genomically-tailored targeted therapies remains discouraging. Methods Using glioblastoma (GBM) as a representative example of high-grade gliomas, we evaluated the clonal architecture and distribution of hotspot mutations in 388 GBMs from the Cancer Genome Atlas (TCGA). Mutations were matched with 54 targeted therapies, followed by a comprehensive evaluation of drug biochemical properties in reference to the drug's clinical efficacy in high-grade gliomas. We then assessed clinical outcomes of a cohort of patients with high-grade gliomas with targetable mutations reviewed at the Johns Hopkins Molecular Tumor Board (JH MTB; n = 50). Results Among 1,156 sequence alterations evaluated, 28.6% represented hotspots. While the frequency of hotspot mutations in GBM was comparable to cancer types with actionable hotspot alterations, GBMs harbored a higher fraction of subclonal mutations that affected hotspots (7.0%), compared to breast cancer (4.9%), lung cancer (4.4%), and melanoma (1.4%). In investigating the biochemical features of targeted therapies paired with recurring alterations, we identified a trend toward higher lipid solubility and lower IC50 in GBM cell lines among drugs with clinical efficacy. The drugs' half-life, molecular weight, surface area and binding to efflux transporters were not associated with clinical efficacy. Among the JH MTB cohort of patients with IDH1 wild-type high-grade gliomas who received targeted therapies, trametinib monotherapy or in combination with dabrafenib conferred radiographic partial response in 75% of patients harboring BRAF or NF1 actionable mutations. Cabozantinib conferred radiographic partial response in two patients harboring a MET and a PDGFRA/KDR amplification. Patients with IDH1 wild-type gliomas that harbored actionable alterations who received genotype-matched targeted therapy had longer progression-free (PFS) and overall survival (OS; 7.37 and 14.72 respectively) than patients whose actionable alterations were not targeted (2.83 and 4.2 months respectively). Conclusion While multiple host, tumor and drug-related features may limit the delivery and efficacy of targeted therapies for patients with high-grade gliomas, genotype-matched targeted therapies confer favorable clinical outcomes. Further studies are needed to generate more data on the impact of biochemical features of targeted therapies on their clinical efficacy for high-grade gliomas.
Collapse
Affiliation(s)
- Paola Ghanem
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maria Fatteh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Olayinka Kamson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Archana Balan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Chang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jessica Tao
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jaishri Blakeley
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jenna Canzoniero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stuart A. Grossman
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen Marrone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karisa C. Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
3
|
Bagley SJ, Kothari S, Rahman R, Lee EQ, Dunn GP, Galanis E, Chang SM, Burt Nabors L, Ahluwalia MS, Stupp R, Mehta MP, Reardon DA, Grossman SA, Sulman EP, Sampson JH, Khagi S, Weller M, Cloughesy TF, Wen PY, Khasraw M. Glioblastoma Clinical Trials: Current Landscape and Opportunities for Improvement. Clin Cancer Res 2022; 28:594-602. [PMID: 34561269 PMCID: PMC9044253 DOI: 10.1158/1078-0432.ccr-21-2750] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Therapeutic advances for glioblastoma have been minimal over the past 2 decades. In light of the multitude of recent phase III trials that have failed to meet their primary endpoints following promising preclinical and early-phase programs, a Society for Neuro-Oncology Think Tank was held in November 2020 to prioritize areas for improvement in the conduct of glioblastoma clinical trials. Here, we review the literature, identify challenges related to clinical trial eligibility criteria and trial design in glioblastoma, and provide recommendations from the Think Tank. In addition, we provide a data-driven context with which to frame this discussion by analyzing key study design features of adult glioblastoma clinical trials listed on ClinicalTrials.gov as "recruiting" or "not yet recruiting" as of February 2021.
Collapse
Affiliation(s)
- Stephen J. Bagley
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shawn Kothari
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q. Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gavin P. Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | | | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Louis Burt Nabors
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Roger Stupp
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stuart A. Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Erik P. Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York
| | - John H. Sampson
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Simon Khagi
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Timothy F. Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
4
|
Zeitlberger AM, Flynn MC, Hollenstein M, Hundsberger T. Assessment of neurological function using the National Institute of Health Stroke Scale in patients with gliomas. Neurooncol Pract 2021; 8:699-705. [PMID: 34777839 DOI: 10.1093/nop/npab046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background The evaluation of treatment response in patients with gliomas is performed using the Response Assessment in Neuro-Oncology (RANO) criteria. These criteria are based on cerebral magnetic resonance imaging (MRI), steroid use, and neurological function. However, a standardized tool for evaluating neurological function was lacking. We compared changes in the National Institute of Health Stroke Scale (NIHSS) to changes in the RANO categories to determine the relationship between clinical and neuroradiological findings. Methods We reviewed data on all adult patients with supratentorial gliomas WHO grade II-IV who were treated at the Cantonal Hospital St. Gallen from 2008 to 2015. The NIHSS was performed prospectively at baseline and at 3-month intervals simultaneously to MRI. Associations between changes in the NIHSS and RANO categories were assessed using the Stuart-Maxwell test. Results Our cohort consisted of 61 patients from which 471 observations were analyzed. The most common histological diagnosis was glioblastoma (49.2%). In total, 74% of RANO categories and 81% of the NIHSS scores remained stable on follow-up. Statistically, contemporaneous changes in the RANO category did not correlate with changes in the NIHSS (P < .0001). Conclusion The application of the NIHSS is easy and feasible in the heterogeneous population of glioma patients. In our cohort, the RANO categories did not reflect contemporaneous changes in the NIHSS. A validated clinical outcome measure with a well-defined minimal clinically important difference is warranted in neuro-oncological research and clinical practice.
Collapse
Affiliation(s)
| | - Marie-Claire Flynn
- Department of Clinical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Monika Hollenstein
- Department of Clinical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Thomas Hundsberger
- Department of Clinical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
5
|
Degorre C, Tofilon P, Camphausen K, Mathen P. Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiat Oncol 2021; 16:191. [PMID: 34583727 PMCID: PMC8480070 DOI: 10.1186/s13014-021-01918-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma is the most common primary brain malignancy and carries with it a poor prognosis. New agents are urgently needed, however nearly all Phase III trials of GBM patients of the past 25 years have failed to demonstrate improvement in outcomes. In 2019, the National Cancer Institute Clinical Trials and Translational Research Advisory Committee (CTAC) Glioblastoma Working Group (GBM WG) identified 5 broad areas of research thought to be important in the development of new herapeutics for GBM. Among those was optimizing radioresponse for GBM in situ. One such strategy to increase radiation efficacy is the addition of a radiosensitizer to improve the therapeutic ratio by enhancing tumor sensitivity while ideally having minimal to no effect on normal tissue. Historically the majority of trials using radiosensitizers have been unsuccessful, but they provide important guidance in what is required to develop agents more efficiently. Improved target selection is essential for a drug to provide maximal benefit, and once that target is identified it must be validated through pre-clinical studies. Careful selection of appropriate in vitro and in vivo models to demonstrate increased radiosensitivity and suitable bioavailability are then necessary to prove that a drug warrants advancement to clinical investigation. Once investigational agents are validated pre-clinically, patient trials require consistency both in terms of planning study design as well as reporting efficacy and toxicity in order to assess the potential benefit of the drug. Through this paper we hope to outline strategies for developing effective radiosensitizers against GBM using as models the examples of XPO1 inhibitors and HDAC inhibitors developed from our own lab.
Collapse
Affiliation(s)
- Charlotte Degorre
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Wang Y, Chen W, Shi Y, Yan C, Kong Z, Wang Y, Wang Y, Ma W. Imposing Phase II and Phase III Clinical Trials of Targeted Drugs for Glioblastoma: Current Status and Progress. Front Oncol 2021; 11:719623. [PMID: 34568049 PMCID: PMC8458950 DOI: 10.3389/fonc.2021.719623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
The most common primary intracranial tumor is glioma, among which glioblastoma (GBM) has the worst prognosis. Because of the high degree of malignancy of GBM and frequent recurrence after surgery, postoperative therapy, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, is particularly important. A wide variety of targeted drugs have undergone phase III clinical trials for patients with GBM, but these drugs do not work for all patients, and few patients in these trials have prolonged overall survival. In this review, some imposing phase III clinical trials of targeted drugs for glioma are introduced, and some prospective phase II clinical trials that have been completed or are in progress are summarized. In addition, the mechanisms of these drugs are briefly introduced, and deficiencies of these clinical trials are analyzed. This review aims to provide a comprehensive overview of current research on targeted drugs for glioma to clarify future research directions.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqi Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengrui Yan
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Shah S, Chu Y, Cegielski V, Chu XP. Acid-Sensing Ion Channel 1 Contributes to Weak Acid-Induced Migration of Human Malignant Glioma Cells. Front Physiol 2021; 12:734418. [PMID: 34557113 PMCID: PMC8452845 DOI: 10.3389/fphys.2021.734418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sareena Shah
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yuyang Chu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victoria Cegielski
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
8
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
9
|
Miller AM, DeAngelis LM. Reevaluation of the Frequent Use of PD-1 Checkpoint Inhibitors for Treatment of Glioblastoma. JAMA 2020; 323:2482-2484. [PMID: 32453825 DOI: 10.1001/jama.2020.5934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Jane EP, Premkumar DR, Thambireddy S, Golbourn B, Agnihotri S, Bertrand KC, Mack SC, Myers MI, Chattopadhyay A, Taylor DL, Schurdak ME, Stern AM, Pollack IF. Targeting NAD + Biosynthesis Overcomes Panobinostat and Bortezomib-Induced Malignant Glioma Resistance. Mol Cancer Res 2020; 18:1004-1017. [PMID: 32238439 DOI: 10.1158/1541-7786.mcr-19-0669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
To improve therapeutic responses in patients with glioma, new combination therapies that exploit a mechanistic understanding of the inevitable emergence of drug resistance are needed. Intratumoral heterogeneity enables a low barrier to resistance in individual patients with glioma. We reasoned that targeting two or more fundamental processes that gliomas are particularly dependent upon could result in pleiotropic effects that would reduce the diversity of resistant subpopulations allowing convergence to a more robust therapeutic strategy. In contrast to the cytostatic responses observed with each drug alone, the combination of the histone deacetylase inhibitor panobinostat and the proteasome inhibitor bortezomib synergistically induced apoptosis of adult and pediatric glioma cell lines at clinically achievable doses. Resistance that developed was examined using RNA-sequencing and pharmacologic screening of resistant versus drug-naïve cells. Quinolinic acid phosphoribosyltransferase (QPRT), the rate-determining enzyme for de novo synthesis of NAD+ from tryptophan, exhibited particularly high differential gene expression in resistant U87 cells and protein expression in all resistant lines tested. Reducing QPRT expression reversed resistance, suggesting that QPRT is a selective and targetable dependency for the panobinostat-bortezomib resistance phenotype. Pharmacologic inhibition of either NAD+ biosynthesis or processes such as DNA repair that consume NAD+ or their simultaneous inhibition with drug combinations, specifically enhanced apoptosis in treatment-resistant cells. Concomitantly, de novo vulnerabilities to known drugs were observed. IMPLICATIONS: These data provide new insights into mechanisms of treatment resistance in gliomas, hold promise for targeting recurrent disease, and provide a potential strategy for further exploration of next-generation inhibitors.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania. .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| | - Swetha Thambireddy
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Golbourn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| | - Kelsey C Bertrand
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Stephen C Mack
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Max I Myers
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - D Lansing Taylor
- Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mark E Schurdak
- Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew M Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania. .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Mathen P, Rowe L, Mackey M, Smart D, Tofilon P, Camphausen K. Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neurooncol Pract 2019; 7:268-276. [PMID: 32537176 DOI: 10.1093/nop/npz057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a challenging diagnosis with almost universally poor prognosis. Though the survival advantage of postoperative radiation (RT) is well established, around 90% of patients will fail in the RT field. The high likelihood of local failure suggests the efficacy of RT needs to be improved to improve clinical outcomes. Radiosensitizers are an established method of enhancing RT cell killing through the addition of a pharmaceutical agent. Though the majority of trials using radiosensitizers have historically been unsuccessful, there continues to be interest with a variety of approaches having been employed. Epidermal growth factor receptor inhibitors, histone deacetylase inhibitors, antiangiogenic agents, and a number of other molecularly targeted agents have all been investigated as potential methods of radiosensitization in the temozolomide era. Outcomes have varied both in terms of toxicity and survival, but some agents such as valproic acid and bortezomib have demonstrated promising results. However, reporting of results in phase 2 trials in newly diagnosed GBM have been inconsistent, with no standard in reporting progression-free survival and toxicity. There is a pressing need for investigation of new agents; however, nearly all phase 3 trials of GBM patients of the past 25 years have demonstrated no improvement in outcomes. One proposed explanation for this is the selection of agents lacking sufficient preclinical data and/or based on poorly designed phase 2 trials. Radiosensitization may represent a viable strategy for improving GBM outcomes in newly diagnosed patients, and further investigation using agents with promising phase 2 data is warranted.
Collapse
Affiliation(s)
- Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lindsay Rowe
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - DeeDee Smart
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Stepanenko AA, Chekhonin VP. Recent Advances in Oncolytic Virotherapy and Immunotherapy for Glioblastoma: A Glimmer of Hope in the Search for an Effective Therapy? Cancers (Basel) 2018; 10:E492. [PMID: 30563098 PMCID: PMC6316815 DOI: 10.3390/cancers10120492] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
To date, no targeted drugs, antibodies or combinations of chemotherapeutics have been demonstrated to be more efficient than temozolomide, or to increase efficacy of standard therapy (surgery, radiotherapy, temozolomide, steroid dexamethasone). According to recent phase III trials, standard therapy may ensure a median overall survival of up to 18⁻20 months for adult patients with newly diagnosed glioblastoma. These data explain a failure of positive non-controlled phase II trials to predict positive phase III trials and should result in revision of the landmark Stupp trial as a historical control for median overall survival in non-controlled trials. A high rate of failures in clinical trials and a lack of effective chemotherapy on the horizon fostered the development of conceptually distinct therapeutic approaches: dendritic cell/peptide immunotherapy, chimeric antigen receptor (CAR) T-cell therapy and oncolytic virotherapy. Recent early phase trials with the recombinant adenovirus DNX-2401 (Ad5-delta24-RGD), polio-rhinovirus chimera (PVSRIPO), parvovirus H-1 (ParvOryx), Toca 511 retroviral vector with 5-fluorocytosine, heat shock protein-peptide complex-96 (HSPPC-96) and dendritic cell vaccines, including DCVax-L vaccine, demonstrated that subsets of patients with glioblastoma/glioma may benefit from oncolytic virotherapy/immunotherapy (>3 years of survival after treatment). However, large controlled trials are required to prove efficacy of next-generation immunotherapeutics and oncolytic vectors.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|