1
|
Malemnganba T, Pandey AK, Mishra A, Mehrotra S, Prajapati VK. Exploring immunotherapy with antibody-drug conjugates in solid tumor oncology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:259-286. [PMID: 39978968 DOI: 10.1016/bs.apcsb.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Immunotherapy has emerged as a hallmark of hope in the formidable battle against solid tumors such as breast cancer, colorectal cancer, etc., with antibody-drug conjugates (ADCs) starting a new era of precision medicine. This chapter delves into the dynamic landscape of immunotherapeutic strategies, focusing on the transformative potential of ADCs. ADCs represent a combination of chemotherapy and immunotherapy, more innovative chemotherapy. We emphasize the intricate interplay between tumor biology and therapeutic intervention, uncovering the mechanisms underlying ADC efficacy and the hurdles they must overcome. Each facet of ADC development is carefully examined, from the delicate balance between payload potency and safety to the quest for enhanced tumor penetration. We also elucidate the synergistic potential of combining ADCs with existing modalities, including chemotherapy and radiation therapy, to amplify therapeutic outcomes while mitigating adverse effects. As we navigate the complexities of solid tumor oncology, a profound understanding of the immunotherapeutic potential of ADCs is gained, offering hope for a cure for patients and clinicians alike. Henceforth, we delve into this transformative journey as we advance in solid tumor treatment regimens using immunotherapy with ADCs, poised at the forefront of oncological innovation.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Anurag Kumar Pandey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
2
|
Pérez-Bermejo M, Caballero-Pascual M, Legidos-García ME, Martínez-Peris M, Casaña-Mohedo J, Llorca-Colomer F, Ventura I, Tomás-Aguirre F, Asins-Cubells A, Murillo-Llorente MT. Sacituzumab Govitecan in Triple Negative Breast Cancer: A Systematic Review of Clinical Trials. Cancers (Basel) 2024; 16:3622. [PMID: 39518062 PMCID: PMC11545346 DOI: 10.3390/cancers16213622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Triple-negative breast cancer is difficult to treat due to the absence of hormone receptors and Her2neu. Sacituzumab govitecan is a new therapeutic approach that uses an antibody directed against the Trop-2 antigen present in solid epithelial tumors, linked to the active metabolite SN-38, similar to irinotecan, to specifically target cancer cells while minimizing damage to healthy cells. The objective of the present review was to evaluate the efficacy and safety of sacituzumab govitecan as a single treatment in patients with triple-negative breast cancer and to compare its results with the standard conventional chemotherapy regimen currently used in this disease. METHODS A systematic review of randomized clinical trials of sacituzumab govitecan was performed. The search was performed in Medline (PubMed), Web of Science, and Cochrane from September 2022 to January 2024. RESULTS Thirty-eight articles are included and evaluated according to inclusion and exclusion criteria corresponding to the two most relevant clinical trials, including specific analyses of cohorts and subgroup study arms within these trials. Data from more recent clinical trials are also reviewed. CONCLUSIONS The efficacy results showed a significantly greater clinical benefit with sacituzumab govitecan compared to standard chemotherapy in patients with triple-negative breast cancer. This drug will become a treatment of substantial impact in future treatment guidelines for this type of cancer.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| | - Mónica Caballero-Pascual
- School of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain;
| | - María Ester Legidos-García
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| | - Miriam Martínez-Peris
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| | - Jorge Casaña-Mohedo
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| | - Francisco Llorca-Colomer
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| | - Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain;
| | - Francisco Tomás-Aguirre
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| | - Adalberto Asins-Cubells
- Centro de Salud de L’Eliana, Departamento Arnau de Vilanova-Lliria, C/Rosales, 23, L’Eliana, 46183 Valencia, Spain;
| | - María Teresa Murillo-Llorente
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, C/Quevedo Nº 2, 46001 Valencia, Spain; (M.E.L.-G.); (M.M.-P.); (J.C.-M.); (F.L.-C.); (F.T.-A.); (M.T.M.-L.)
| |
Collapse
|
3
|
Babbar R, Vanya, Bassi A, Arora R, Aggarwal A, Wal P, Dwivedi SK, Alolayan S, Gulati M, Vargas-De-La-Cruz C, Behl T, Ojha S. Understanding the promising role of antibody drug conjugates in breast and ovarian cancer. Heliyon 2023; 9:e21425. [PMID: 38027672 PMCID: PMC10660083 DOI: 10.1016/j.heliyon.2023.e21425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Aarti Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ankur Aggarwal
- Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19 Bhauti, Kanpur, Uttar Pradesh, India
| | | | - Salma Alolayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima, 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, 15001, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, 140306, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Guo CH, Wang SY, Chung CH, Shih MY, Li WC, Chen PC, Lee SY, Hsia S. Selenium modulates AR/IGF-1R/EGFR and TROP2 signaling pathways and improves anticancer efficacy in murine mammary carcinoma 4T1. J Nutr Biochem 2023; 120:109417. [PMID: 37482256 DOI: 10.1016/j.jnutbio.2023.109417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The micronutrient selenium (Se) has been shown to exert potential anticancer properties. This study aimed to evaluate the effects of Se (in Se yeast form) on the selenoproteins (SELENO), AR/IGF-1R/EGFR, PI3K/Akt/mTOR and Ras/Raf/ERK cascades, and immune checkpoint blockade in TNBC murine 4T1 cells. We also assessed the effects of combination treatment with chemotherapeutic doxorubicin and Se on trophoblast cell surface antigen 2 (TROP2) levels. Compared with the control groups, cells incubated with Se (0.25, 0.5, 0.75, 1.0, 1.5 µg Se/mL) have lower viability, raised intracellular Se concentrations and SELENO expression, and higher malondialdehyde products in a dose-dependent manner. Se induced the inactivation of AR/IGF-1R/EGFR and downregulation of the PI3K/Akt/mTOR and Ras/Raf/ERK signaling molecules. Se-treated cells also exhibited decreased mitochondrial membrane potential, reduced levels of the cell cycle regulatory protein cyclin D1, cancer stemness, metastatic and EMT-related markers, and increased apoptosis. Subsequently, Se treatment significantly suppressed PD-1/PD-L1 and CTLA-4 mRNA levels and proteins. Doxorubicin decreased 4T1 cell viability and TROP2 expression levels, but the addition of Se to doxorubicin contributed to further reductions. Similar responses to Se treatment were also observed in the human MDA-MB-231 and MCF-7 breast cancer cells. These results show that Se upregulates SELENO and anti-AR/IGF-1R/EGFR signaling in TNBC cells, thus inducing oxidative stress-dependent apoptosis and cell cycle arrest, stemness, EMT, and metastasis, as well as blocking the immune checkpoint molecules. TROP2 down-regulation with Se is also a potential anti-TNBC therapeutic target.
Collapse
Affiliation(s)
- Chih-Hung Guo
- Micronutrition and Biomedical Nutrition Laboratories, Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, Taiwan; Taiwan Nutraceutical Association, Taipei, Taiwan.
| | - Shiou-Yue Wang
- Micronutrition and Biomedical Nutrition Laboratories, Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, Taiwan; Taiwan Nutraceutical Association, Taipei, Taiwan
| | | | - Min-Yi Shih
- Taiwan Nutraceutical Association, Taipei, Taiwan
| | - Wen-Chin Li
- Taiwan Nutraceutical Association, Taipei, Taiwan
| | | | - Shih-Yu Lee
- Biotechnology, Health, and Innovation Research Center, Hung-Kuang University, Taichung, Taiwan
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei, Taiwan.
| |
Collapse
|
5
|
Schreiber AR, O'Bryant CL, Kabos P, Diamond JR. The emergence of targeted therapy for HER2-low triple-negative breast cancer: a review of fam-trastuzumab deruxtecan. Expert Rev Anticancer Ther 2023; 23:1061-1069. [PMID: 37742278 DOI: 10.1080/14737140.2023.2257885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Metastatic triple-negative breast cancer (TNBC) is an aggressive sub-type of breast cancer. Despite recent advances, metastatic TNBC remains difficult to treat with limited targeted treatment options. Fam-trastuzumab deruxtecan (T-DXd), is a novel antibody-drug conjugate (ADC) targeting human epidermal growth factor receptor 2 (HER2) and is composed of a unique linker bound to the topoisomerase I inhibitor DXd. T-DXd has significant anti-tumor activity in patients with HER2-low TNBC. AREAS COVERED This review reports on the mechanism, pre-clinical/clinical studies, efficacy, and tolerability of T-DXd. A literature search was conducted via PubMed using keywords such as 'fam-trastuzumab deruxtecan,' 'Enhertu,' and 'HER2-low cancers.' EXPERT OPINION The Phase III Destiny-Breast04 Trial showed benefit in progression-free and overall survival in patients with HER2-low metastatic breast cancers treated with T-DXd compared to treatment of physician's choice chemotherapy. T-DXd is the first pharmaceutical to effectively target a HER2-low population with clinically meaningful efficacy in patients with HER2-low TNBC. Compared to chemotherapy, T-DXd has a similar safety profile, with the additional need for close monitoring for interstitial lung disease. Given the clinical activity of T-DXd in TNBC, it is likely there will be continued efforts to refine HER2-low diagnostics and to develop additional ADCs with other protein targets.
Collapse
Affiliation(s)
- Anna R Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cindy L O'Bryant
- Department of Clinical Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Kabos
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Supportivtherapie bei Brustkrebs. IM FOKUS ONKOLOGIE 2023; 26. [PMCID: PMC10069941 DOI: 10.1007/s15015-023-3073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Unveiling the antibody-drug conjugates portfolio in battling Triple-negative breast cancer: Therapeutic trends and Future horizon. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:25. [PMID: 36456774 DOI: 10.1007/s12032-022-01884-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
Triple-negative breast cancer (TNBC) showcases a labyrinthine network exhibiting deficient expression of Estrogen receptor (ER), Progesterone receptor (PR), and Human-epidermal growth factor receptor-2 (HER2). This restricts the conventional chemotherapeutic, hormonal, and few targeted regimens in showing efficient anti-tumor response. Antibody-drug conjugates (ADCs) are target-specific conjugates comprising a monoclonal antibody attached to the desired cytotoxic payload with the support of a stable linker. They are designated as one of the encouraging sets of targeted therapies that have unveiled affirmative outcomes owing to increased specificity in targeting the undetectable or deficiently expressed targets. Another virtue of ADCs lending superiority to this approach is the presence of inherent bystander effect which has a detrimental influence on the tumor microenvironment (TME) devoid of antigen expression. In the current scenario, FDA-approved Sacituzumab govitecan is widely being utilized to mitigate TNBC while many other ADCs are being studied in clinical trials. Additionally, a focus has been set on revelation of application of Trastuzumab deruxtecan in HER2-low metastatic breast cancer which widens the current therapeutic horizon dealing with such carcinomas. After making an effort towards sketching ADCs profile, we conclude that this novel approach deserves to be investigated through future campaigns owing to its remarkable bystander effect, ability to precisely recognize the antigen and spare the naïve cells from detrimental toxicity. Exploration of the remarkable potential of Sacituzumab govitecan in multiple indications including TNBC portrays the prominence of ADCs and prompts the bright future of this therapeutic approach. In this review, we present the basic foundation of ADCs alongside summarizing the building blocks of several ADCs used in TNBC. Furthermore, by shedding light on the therapeutic regimens and concomitant effects of various ADCs derived from the supportive backbone of clinical trials, we have attempted to convene several segments of ADCs and portray their potentialities time ahead.
Collapse
|
8
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Liu L, Xie F, Xiao D, Xu X, Su Z, Wang Y, Fan S, Zhou X, Li S. Synthesis and evaluation of highly releasable and structurally stable antibody-SN-38-conjugates. Drug Deliv 2021; 28:2603-2617. [PMID: 34894942 PMCID: PMC8676668 DOI: 10.1080/10717544.2021.2008053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Camptothecins, traditional chemotherapy drugs, have been clinically used in antibody-drug conjugates (ADCs), which refreshes the recognition that ADCs preferably incorporate highly potent payloads. However, SN-38, active metabolite of irinotecan from camptothecins, tended to be incorporated into ADCs with an unstable acid sensitive bond, not with the widely used Cathepsin B (CTSB) sensitive bond, which may pose the risk of off-target. Herein, we reported a novel strategy to construct highly releasable and structurally stable SN-38-conjugates, in which CTSB linkers directly connected to the 10-OH group through ether bond, not to the common 20-OH group of lactones of SN-38. In this paper, rapid release of SN-38 was skillfully demonstrated by utilizing the fluorescence properties of SN-38. The SN-38-ether-ADC displayed highly stable serum stability with the half-life over 10 days. Moreover, the drug-antibody-ratio (DAR) of ADC could be elevated to 7.1 through the introduction of polyethylene glycol (PEG) moieties without aggregation. The optimized ADC exhibited potent in vitro activities up to 5.5 nM, comparable to SN-38. Moreover, this ADC group significantly delayed tumor growth in vivo. In conclusion, the novel strategy has the potential to promote the development of SN38-ADCs and enrich the conjugation approaches for hydroxyl-bearing payloads.
Collapse
Affiliation(s)
- Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zheng Su
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|