1
|
Asioli S, Gatto L, Vardy U, Agostinelli C, Di Nunno V, Righi S, Tosoni A, Ambrosi F, Bartolini S, Giannini C, Franceschi E. Immunophenotypic Profile of Adult Glioblastoma IDH-Wildtype Microenvironment: A Cohort Study. Cancers (Basel) 2024; 16:3859. [PMID: 39594814 PMCID: PMC11592556 DOI: 10.3390/cancers16223859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Glioblastoma IDH-wildtype (GBM IDH-wt) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping its tumor microenvironment (TME) regulate tumor progression and treatment response. The aim of this study was to characterize the main immunosuppressive elements of the GBM IDH-wt TME. Methods: Immunohistochemistry for CD3, CD4, CD8, CD163, programmed death ligand 1 (PD-L1) and programmed death 1 (PD1) was performed on surgical tumor specimens from patients diagnosed with GBM IDH-wt, according to the CNS WHO 2021 criteria. The impact of categorical variables on time-dependent outcomes such as overall survival (OS) and progression-free survival (PFS) has been estimated through the Kaplan-Meier method. Results: We included 30 patients (19 males and 11 females), median age of 59.8 years (range 40.2-69.1 years). All patients underwent surgery followed by temozolomide concurrent with and adjuvant to radiotherapy. MGMT was methylated in 14 patients (47%) and unmethylated in 16 patients (53%). The overall absolute percentages of CD4+ lymphocytes, both intratumoral and perivascular, were significantly more represented than CD8+ lymphocytes in the TME (p = 0.02). A low density of CD4+ lymphocytes (≤10%) was found to be a favorable prognostic factor for GBM outcome (p = 0.02). Patients with MGMT methylated and unmethylated tumors exhibited a distinct TME composition, with a significant higher number of perivascular CD8+ lymphocytes (p = 0.002), intratumoral CD8+ lymphocytes (p = 0.0024) and perivascular CD4+ lymphocytes (p = 0.014) in MGMT unmethylated tumors. PD-L1 expression in tumor cell surface was observed in four tumors (13.3%), and PD1 expression in infiltrating T lymphocytes was observed in nine (30%) tumors, with predominantly perivascular distribution. Conclusions: MGMT methylated and unmethylated tumors exhibit different immune profiles, likely reflecting the different biology of these tumors. The expression of PD-L1 in GBM IDH-wt patients is confined to a small subpopulation. While we found a significant association between low CD4+ lymphocyte density (≤10%) and survival, given the small numbers of our cohort, the prognostic value of CD4+ lymphocyte density will need to be validated in large-scale studies.
Collapse
Affiliation(s)
- Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy; (S.A.); (C.G.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Uri Vardy
- School of Medicine and Surgery, University of Bologna, 40138 Bologna, Italy;
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Simona Righi
- Pathology Unit, Maggiore Hospital-AUSL Bologna, 40133 Bologna, Italy; (S.R.); (F.A.)
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Francesca Ambrosi
- Pathology Unit, Maggiore Hospital-AUSL Bologna, 40133 Bologna, Italy; (S.R.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy; (S.A.); (C.G.)
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| |
Collapse
|
2
|
Kosianova А, Pak O, Bryukhovetskiy I. Regulation of cancer stem cells and immunotherapy of glioblastoma (Review). Biomed Rep 2024; 20:24. [PMID: 38170016 PMCID: PMC10758921 DOI: 10.3892/br.2023.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Glioblastoma (GB) is one of the most adverse diagnoses in oncology. Complex current treatment results in a median survival of 15 months. Resistance to treatment is associated with the presence of cancer stem cells (CSCs). The present review aimed to analyze the mechanisms of CSC plasticity, showing the particular role of β-catenin in regulating vital functions of CSCs, and to describe the molecular mechanisms of Wnt-independent increase of β-catenin levels, which is influenced by the local microenvironment of CSCs. The present review also analyzed the reasons for the low effectiveness of using medication in the regulation of CSCs, and proposed the development of immunotherapy scenarios with tumor cell vaccines, containing heterogenous cancer cells able of producing a multidirectional antineoplastic immune response. Additionally, the possibility of managing lymphopenia by transplanting hematopoietic stem cells from a healthy sibling and using clofazimine or other repurposed drugs that reduce β-catenin concentration in CSCs was discussed in the present study.
Collapse
Affiliation(s)
- Аleksandra Kosianova
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Oleg Pak
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Igor Bryukhovetskiy
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| |
Collapse
|
3
|
Cerretti G, Pessina F, Franceschi E, Barresi V, Salvalaggio A, Padovan M, Manara R, Di Nunno V, Bono BC, Librizzi G, Caccese M, Scorsetti M, Maccari M, Minniti G, Navarria P, Lombardi G. Spinal ependymoma in adults: from molecular advances to new treatment perspectives. Front Oncol 2023; 13:1301179. [PMID: 38074692 PMCID: PMC10704349 DOI: 10.3389/fonc.2023.1301179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2024] Open
Abstract
Ependymomas are rare glial tumors with clinical and biological heterogeneity, categorized into supratentorial ependymoma, posterior fossa ependymoma, and spinal cord ependymoma, according to anatomical localization. Spinal ependymoma comprises four different types: spinal ependymoma, spinal ependymoma MYCN-amplified, myxopapillary ependymoma, and subependymoma. The clinical onset largely depends on the spinal location of the tumor. Both non-specific and specific sensory and/or motor symptoms can be present. Owing to diverse features and the low incidence of spinal ependymomas, most of the current clinical management is derived from small retrospective studies, particularly in adults. Treatment involves primarily surgical resection, aiming at maximal safe resection. The use of radiotherapy remains controversial and the optimal dose has not been established; it is usually considered after subtotal resection for WHO grade 2 ependymoma and for WHO grade 3 ependymoma regardless of the extent of resection. There are limited systemic treatments available, with limited durable results and modest improvement in progression-free survival. Thus, chemotherapy is usually reserved for recurrent cases where resection and/or radiation is not feasible. Recently, a combination of temozolomide and lapatinib has shown modest results with a median progression-free survival (PFS) of 7.8 months in recurrent spinal ependymomas. Other studies have explored the use of temozolomide, platinum compounds, etoposide, and bevacizumab, but standard treatment options have not yet been defined. New treatment options with targeted treatments and immunotherapy are being investigated. Neurological and supportive care are crucial, even in the early stages. Post-surgical rehabilitation can improve the consequences of surgery and maintain a good quality of life, especially in young patients with long life expectancy. Here, we focus on the diagnosis and treatment recommendations for adults with spinal ependymoma, and discuss recent molecular advances and new treatment perspectives.
Collapse
Affiliation(s)
- Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federico Pessina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Renzo Manara
- Department of Neuroscience, Azienda Ospedale-Università di Padova, Padua, Italy
- Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Beatrice Claudia Bono
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Librizzi
- Department of Neuroscience, Azienda Ospedale-Università di Padova, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
4
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA. Glioblastoma treatment slowly moves toward change: novel druggable targets and translational horizons in 2022. Expert Opin Drug Discov 2023; 18:269-286. [PMID: 36718723 DOI: 10.1080/17460441.2023.2174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain tumor in adults. GBM treatment options have been the same for the past 30 years and have only modestly extended survival, despite aggressive multimodal treatments. The progressively better knowledge of GBM biology and a comprehensive analysis of its genomic profile have elucidated GBM heterogeneity, contributing to a more effective molecular classification and to the development of innovative targeted therapeutic approaches. AREAS COVERED This article reports all the noteworthy innovations for immunotherapy and targeted therapy, providing insights into the current advances in trial designs, including combination therapies with immuno-oncology agents and target combinations. EXPERT OPINION GBM molecular heterogeneity and brain anatomical characteristics critically restrain drug effectiveness. Nevertheless, stimulating insights for future research and drug development come from innovative treatment strategies for GBM, such as multi-specific 'off-the-shelf' CAR-T therapy, oncolytic viral therapy and autologous dendritic cell vaccination. Disappointing results from targeted therapies-clinical trials are mainly due to complex interferences between signaling pathways and biological processes leading to drug resistance: hence, it is imperative in the future to develop combinatorial approaches and multimodal therapies.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Tumor Microenvironment in Gliomas: A Treatment Hurdle or an Opportunity to Grab? Cancers (Basel) 2023; 15:cancers15041042. [PMID: 36831383 PMCID: PMC9954692 DOI: 10.3390/cancers15041042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Gliomas are the most frequent central nervous system (CNS) primary tumors. The prognosis and clinical outcomes of these malignancies strongly diverge according to their molecular alterations and range from a few months to decades. The tumor-associated microenvironment involves all cells and connective tissues surrounding tumor cells. The composition of the microenvironment as well as the interactions with associated neoplastic mass, are both variables assuming an increasing interest in these last years. This is mainly because the microenvironment can mediate progression, invasion, dedifferentiation, resistance to treatment, and relapse of primary gliomas. In particular, the tumor microenvironment strongly diverges from isocitrate dehydrogenase (IDH) mutated and wild-type (wt) tumors. Indeed, IDH mutated gliomas often show a lower infiltration of immune cells with reduced angiogenesis as compared to IDH wt gliomas. On the other hand, IDH wt tumors exhibit a strong immune infiltration mediated by several cytokines and chemokines, including CCL2, CCL7, GDNF, CSF-1, GM-CSF, etc. The presence of several factors, including Sox2, Oct4, PD-L1, FAS-L, and TGF β2, also mediate an immune switch toward a regulatory inhibited immune system. Other important interactions are described between IDH wt glioblastoma cells and astrocytes, neurons, and stem cells, while these interactions are less elucidated in IDH-mutated tumors. The possibility of targeting the microenvironment is an intriguing perspective in terms of therapeutic drug development. In this review, we summarized available evidence related to the glioma microenvironment, focusing on differences within different glioma subtypes and on possible therapeutic development.
Collapse
|
7
|
Di Nunno V, Franceschi E, Gatto L, Tosoni A, Bartolini S, Brandes AA. How to treat histone 3 altered gliomas: molecular landscape and therapeutic developments. Expert Rev Clin Pharmacol 2023; 16:17-26. [PMID: 36576307 DOI: 10.1080/17512433.2023.2163385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Diffuse midline gliomas (DMG) and diffuse hemispheric glioma (DHG) are both rare tumors characterized and recognized for specific alterations of histone 3 including H3K27 (DMG) and H3G34 (DHG). Despite these tumors arising from alterations of the same gene their clinical, radiological, and molecular behaviors strongly diverge, requiring a personalized therapeutic approach. AREAS COVERED We performed a review on Medline/PudMed aiming to search papers relative to prospective trials, retrospective studies, case series, and case reports of interest in order to investigate current knowledge toward the main clinical and molecular characteristics, radiology, and diagnosis, loco-regional and systemic treatments of these tumors. Moreover, we also evaluated the novel treatments under investigation. EXPERT OPINION Thanks to an increased knowledge of the genomic landscape of these rare tumors, there are novels promising therapeutic targets for these malignancies. However, the majority of available trials allowed enrollment only in DMG, while few studies are focused on or allow the inclusion of DHG patients.
Collapse
Affiliation(s)
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| |
Collapse
|
8
|
Liang R, Wu C, Liu S, Zhao W. Targeting interleukin-13 receptor α2 (IL-13Rα2) for glioblastoma therapy with surface functionalized nanocarriers. Drug Deliv 2022; 29:1620-1630. [PMID: 35612318 PMCID: PMC9135425 DOI: 10.1080/10717544.2022.2075986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022] Open
Abstract
Despite surgical and therapeutic advances, glioblastoma multiforme (GBM) is among the most fatal primary brain tumor that is aggressive in nature. Patients with GBM have a median lifespan of just 15 months when treated with the current standard of therapy, which includes surgical resection and concomitant chemo-radiotherapy. In recent years, nanotechnology has shown considerable promise in treating a variety of illnesses, and certain nanomaterials have been proven to pass the blood-brain barrier (BBB) and stay in glioblastoma tissues. Recent preclinical research suggests that the diagnosis and treatment of brain tumor is significantly explored through the intervention of nanomaterials that has showed enhanced effect. In order to elicit an antitumor response, it is necessary to retain the therapeutic candidates within glioblastoma tissues and this job is effectively carried out by nanocarrier particularly functionalized nanocarriers. In the arena of neoplastic diseases including GBM have achieved great attention in recent decades. Furthermore, interleukin-13 receptor α chain variant 2 (IL13Rα2) is a highly expressed and studied target in GBM that is lacked by the surrounding environment. The absence of IL13Rα2 in surrounding normal tissues has made it a suitable target in glioblastoma therapy. In this review article, we highlighted the role of IL13Rα2 as a potential target in GBM along with design and fabrication of efficient targeting strategies for IL13Rα2 through surface functionalized nanocarriers.
Collapse
Affiliation(s)
- Ruijia Liang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Cheng Wu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shiming Liu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wenyan Zhao
- Department of General Practice Medicine, Center for General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
9
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
10
|
Payload Delivery: Engineering Immune Cells to Disrupt the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13236000. [PMID: 34885108 PMCID: PMC8657158 DOI: 10.3390/cancers13236000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
Although chimeric antigen receptor (CAR) T cells have shown impressive clinical success against haematological malignancies such as B cell lymphoma and acute lymphoblastic leukaemia, their efficacy against non-haematological solid malignancies has been largely disappointing. Solid tumours pose many additional challenges for CAR T cells that have severely blunted their potency, including homing to the sites of disease, survival and persistence within the adverse conditions of the tumour microenvironment, and above all, the highly immunosuppressive nature of the tumour milieu. Gene engineering approaches for generating immune cells capable of overcoming these hurdles remain an unmet therapeutic need and ongoing area of research. Recent advances have involved gene constructs for membrane-bound and/or secretable proteins that provide added effector cell function over and above the benefits of classical CAR-mediated cytotoxicity, rendering immune cells not only as direct cytotoxic effectors against tumours, but also as vessels for payload delivery capable of both modulating the tumour microenvironment and orchestrating innate and adaptive anti-tumour immunity. We discuss here the novel concept of engineered immune cells as vessels for payload delivery into the tumour microenvironment, how these cells are better adapted to overcome the challenges faced in a solid tumour, and importantly, the novel gene engineering approaches required to deliver these more complex polycistronic gene constructs.
Collapse
|