1
|
Thomas BJ, Awan SZ, Joshi T, Daniels MA, Porciani D, Burke DH. Anti-EGFR aptamer exhibits direct anti-cancer effects in NSCLC cells harboring EGFR L858R mutations. NPJ Precis Oncol 2024; 8:271. [PMID: 39572699 PMCID: PMC11582725 DOI: 10.1038/s41698-024-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) adenocarcinoma (LUAD) is a leading cause of death worldwide. Activating mutations in the tyrosine kinase domain of the oncogene epidermal growth factor receptor (EGFR) are responsible for ~10-50% of all LUAD cases. Although tyrosine kinase inhibitors (TKIs) have been effective in prolonging patient survival and quality of life, acquired resistance and disease progression are inevitable, presenting a clear unmet need for alternative or adjuvant therapeutics. Here we show that an anti-EGFR aptamer (EGFRapt) decreases viability and tumor growth of LUAD cell lines harboring the L858R ± T790M mutation in EGFR. Additionally, we elucidate the mechanism by which EGFRapt exerts these effects by monitoring cellular processes associated with kinase-dependent and kinase-independent mechanisms. Overall, these data establish that EGFRapt has direct anti-cancer activity in mutant EGFR positive LUAD via targetable mechanisms that are independent of existing approaches, and they provide a foundation for further development of nucleic acid-based therapies that target EGFR.
Collapse
Affiliation(s)
- Brian J Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sania Z Awan
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology (BBME), University of Missouri School of Medicine, Columbia, MO, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Standard BioTools Inc./SomaLogic Inc., Boulder, CO, USA.
| | - Donald H Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
2
|
Lee SH, Jeong H, Kim DH, Jang SJ, Kim SW, Yoon S, Lee DH. Comparison of Clinicopathogenomic Features and Treatment Outcomes of EGFR and HER2 Exon 20 Insertion Mutations in Non-Small Cell Lung Cancer: Single-Institution Experience. Cancer Res Treat 2024; 56:774-784. [PMID: 38291744 PMCID: PMC11261192 DOI: 10.4143/crt.2023.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/28/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Exon 20 insertion mutations (E20ins) in epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) in non-small cell lung cancer (NSCLC) patients has become more important with emergence of novel agents targeting E20ins. MATERIALS AND METHODS Advanced/Metastatic NSCLC patients with E20ins were included. EGFR E20ins was identified by two methods, next-generation sequencing (NGS) or real-time polymerase chain reaction (PCR), while HER2 E20ins was done by NGS only. RESULTS Between December 2013 and July 2021, E20ins were identified in 107 patients at Asan Medical Center; 67 EGFR E20ins and 40 HER2 E20ins. Out of 32 patients with EGFR E20ins who had tested both PCR and NGS, 17 were identified only through NGS and the other 15 through both tests, giving a discordance rate of 53.1%. There was no clinically significant difference in clinicopathologic features between EGFR and HER2 E20ins; both were observed more frequently in adenocarcinoma, female and never-smokers. Brain metastases were evident at diagnosis in 31.8% of EGFR E20ins and 27.5% of HER2 E20ins, respectively. Platinum-based doublets demonstrated objective response rates (ORR) of 13.3% with a median progression-free survival (PFS) of 4.2 months for EGFR E20ins and 35.3% with 4.7 months for HER2 E20ins, respectively. In contrast, novel EGFR E20ins-targeted agents exhibited an ORR of 46.2% with a median PFS of 5.4 months, while HER2-targeted agents showed an ORR of 50% with that of 7.0 months. CONCLUSION Identification of EGFR and HER2 E20ins is more important as their targeted therapies improved outcomes. Upfront NGS test as a comprehensive molecular approach is strongly warranted.
Collapse
Affiliation(s)
- So Heun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyehyun Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok Hoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Zhang X, Wang H, Sun C. BiSpec Pairwise AI: guiding the selection of bispecific antibody target combinations with pairwise learning and GPT augmentation. J Cancer Res Clin Oncol 2024; 150:237. [PMID: 38713378 PMCID: PMC11076393 DOI: 10.1007/s00432-024-05740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Bispecific antibodies (BsAbs), capable of targeting two antigens simultaneously, represent a significant advancement by employing dual mechanisms of action for tumor suppression. However, how to pair targets to develop effective and safe bispecific drugs is a major challenge for pharmaceutical companies. METHODS Using machine learning models, we refined the biological characteristics of currently approved or in clinical development BsAbs and analyzed hundreds of membrane proteins as bispecific targets to predict the likelihood of successful drug development for various target combinations. Moreover, to enhance the interpretability of prediction results in bispecific target combination, we combined machine learning models with Large Language Models (LLMs). Through a Retrieval-Augmented Generation (RAG) approach, we supplement each pair of bispecific targets' machine learning prediction with important features and rationales, generating interpretable analytical reports. RESULTS In this study, the XGBoost model with pairwise learning was employed to predict the druggability of BsAbs. By analyzing extensive data on BsAbs and designing features from perspectives such as target activity, safety, cell type specificity, pathway mechanism, and gene embedding representation, our model is able to predict target combinations of BsAbs with high market potential. Specifically, we integrated XGBoost with the GPT model to discuss the efficacy of each bispecific target pair, thereby aiding the decision-making for drug developers. CONCLUSION The novelty of this study lies in the integration of machine learning and GPT techniques to provide a novel framework for the design of BsAbs drugs. This holistic approach not only improves prediction accuracy, but also enhances the interpretability and innovativeness of drug design.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Huiyu Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China.
| |
Collapse
|
4
|
Gou Q, Gou Q, Gan X, Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci Rep 2024; 14:10317. [PMID: 38705930 PMCID: PMC11070427 DOI: 10.1038/s41598-024-61087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024] Open
Abstract
Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.
Collapse
Affiliation(s)
- Qitao Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaochuan Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Xie
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Ou SHI, Prawitz T, Lin HM, Hong JL, Tan M, Proskorovsky I, Hernandez L, Jin S, Zhang P, Lin J, Patel J, Nguyen D, Neal JW. Efficacy of Mobocertinib and Amivantamab in Patients With Advanced Non-Small Cell Lung Cancer With EGFR Exon 20 Insertions Previously Treated With Platinum-Based Chemotherapy: An Indirect Treatment Comparison. Clin Lung Cancer 2024; 25:e145-e152.e3. [PMID: 38114357 DOI: 10.1016/j.cllc.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Exon 20 insertions (ex20ins) mutations of the EGFR gene account for 1% to 2% of all non-small-cell lung cancers (NSCLCs). Targeted therapies have been developed to treat this cancer type but have not been studied in head-to-head trials. Our objective was to use a matching-adjusted indirect comparison (MAIC) to assess the efficacy of mobocertinib and amivantamab in patients with NSCLC EGFR ex20ins mutations who were previously treated with platinum-based chemotherapy. MATERIALS AND METHODS An unanchored MAIC was conducted to estimate the treatment effects of mobocertinib and amivantamab using individual-level data from the mobocertinib phase I/II single-arm trial (NCT02716116) and published data from the amivantamab single-arm CHRYSALIS trial (NCT02609776). Confirmed overall response rate (cORR), progression-free survival (PFS), overall survival (OS), and duration of response (DoR) were assessed. RESULTS Both trials were comparable in terms of study population, study design, and outcome definitions and included 114 patients who received mobocertinib and 114 patients who received amivantamab. After MAIC weighting, all reported baseline characteristics were balanced between mobocertinib and amivantamab. The weighted odds ratio (OR) [95% confidence interval (CI)] comparing mobocertinib to amivantamab was 0.56 (0.30-1.04) for independent review committee (IRC)-assessed cORR and 0.98 (0.53-1.82) for investigator (INV)-assessed cORR. The weighted hazard ratio (HR) comparing mobocertinib to amivantamab was 0.74 (0.51-1.07) for IRC-assessed PFS, 0.92 (0.57-1.48) for OS, and 0.59 (0.30-1.18) for INV-assessed DoR. CONCLUSION MAIC analysis showed that mobocertinib and amivantamab had similar efficacy in patients with NSCLC harboring EGFR ex20ins mutations whose disease progressed during or after platinum-based chemotherapy. These findings may benefit patients by supporting future treatment options.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA
| | | | - Huamao M Lin
- Takeda Development Center Americas, Inc., Lexington, MA.
| | | | | | | | | | - Shu Jin
- Takeda Development Center Americas, Inc., Lexington, MA
| | | | - Jianchang Lin
- Takeda Development Center Americas, Inc., Lexington, MA
| | - Jyoti Patel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Danny Nguyen
- City of Hope National Medical Center, Duarte, CA
| | - Joel W Neal
- Stanford Cancer Institute, Stanford University, Stanford, CA
| |
Collapse
|
6
|
Zavaleta-Monestel E, García-Montero J, Arguedas-Chacón S, Quesada-Villaseñor R, Barrantes-López M, Arroyo-Solís R, Zuñiga-Orlich CE. Amivantamab: A Novel Advance in the Treatment of Non-small Cell Lung Cancer. Cureus 2024; 16:e60851. [PMID: 38910714 PMCID: PMC11191844 DOI: 10.7759/cureus.60851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Amivantamab is a fully human bispecific monoclonal antibody indicated for treating patients with specifically large cell lung cancer. Its dosage is based on the patient's initial body weight and is administered via intravenous infusion after dilution. Therefore, this drug is given as a strategy due to the great need for a molecule targeting epidermal growth factor receptor (EGFR) and the mesenchymal-epithelial transition factor (MET), as acquired resistance to tyrosine kinase inhibitors (TKIs) was observed in the treatment of large cell lung cancer. This article encompasses a review of the benefits of amivantamab for patients with non-small cell lung cancer (NSCLC). This drug is the first therapy directed against this specific mutation, and unlike others, it could bind to two genetic receptors, whereas antibodies, in general, are directed toward a single receptor.
Collapse
|
7
|
Wang J, Kang G, Lu H, de Marco A, Yuan H, Feng Z, Gao M, Wang X, Wang H, Zhang X, Wang Y, Zhang M, Wang P, Feng Y, Liu Z, Cao X, Huang H. Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities. Clin Transl Med 2024; 14:e1636. [PMID: 38533646 PMCID: PMC10966562 DOI: 10.1002/ctm2.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) pose significant challenges in terms of treatment non-response, necessitating the development of novel therapeutic approaches. Although biological medicines that target TNF-α (tumour necrosis factor-α) have shown clinical success in some IBD patients, a substantial proportion still fails to respond. METHODS We designed bispecific nanobodies (BsNbs) with the ability to simultaneously target human macrophage-expressed membrane TNF-α (hmTNF-α) and IL-23. Additionally, we fused the constant region of human IgG1 Fc (hIgG1 Fc) to BsNb to create BsNb-Fc. Our study encompassed in vitro and in vivo characterization of BsNb and BsNb-Fc. RESULTS BsNb-Fc exhibited an improved serum half-life, targeting capability and effector function than BsNb. It's demonstrated that BsNb-Fc exhibited superior anti-inflammatory effects compared to the anti-TNF-α mAb (infliximab, IFX) combined with anti-IL-12/IL-23p40 mAb (ustekinumab, UST) by Transwell co-culture assays. Notably, in murine models of acute colitis brought on by 2,4,6-trinitrobenzene sulfonic acid(TNBS) and dextran sulphate sodium (DSS), BsNb-Fc effectively alleviated colitis severity. Additionally, BsNb-Fc outperformed the IFX&UST combination in TNBS-induced colitis, significantly reducing colon inflammation in mice with colitis produced by TNBS and DSS. CONCLUSION These findings highlight an enhanced efficacy and improved biostability of BsNb-Fc, suggesting its potential as a promising therapeutic option for IBD patients with insufficient response to TNF-α inhibition. KEY POINTS A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability. BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments. BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST combination.
Collapse
Affiliation(s)
- Jiewen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Guangbo Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Ario de Marco
- Laboratory for Environmental and Life SciencesUniversity of Nova GoricaNova GoricaSlovenia
| | - Haibin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Mengxue Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Huahong Wang
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Xiaolan Zhang
- Department of GastroenterologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuli Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research InstituteTianjin Key Laboratory of Quality Control in Chinese MedicineTianjinChina
- State Key Laboratory of Drug Delivery Technology and PharmacokineticsTianjin Institute of Pharmaceutical ResearchTianjinChina
| | - Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- China Resources Biopharmaceutical Company LimitedBeijingChina
| | - Ping Wang
- New Technology R&D DepartmentTianjin Modern Innovative TCM Technology Company LimitedTianjinChina
| | - Yuanhang Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - He Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| |
Collapse
|
8
|
Patel S, Patel JD. Current and Emerging Treatment Options for Patients with Metastatic EGFR-Mutated Non-small Cell Lung Cancer After Progression on Osimertinib and Platinum-Based Chemotherapy: A Podcast Discussion. Adv Ther 2023; 40:5579-5590. [PMID: 37801233 PMCID: PMC10611612 DOI: 10.1007/s12325-023-02680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
Patients with metastatic epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) are widely treated with osimertinib, the preferred first-line treatment option. However, disease progression inevitably occurs, driven by EGFR-dependent or EGFR-independent mechanisms of resistance. Platinum-based chemotherapy is the recommended treatment following progression with osimertinib but responses to platinum-based chemotherapy are transient. Salvage therapies, which are used after progression on platinum-based chemotherapy, have poor clinical outcomes in addition to substantial toxicity. In this podcast, we discuss the current treatment landscape and emerging therapeutic options for patients with metastatic EGFR-mutated NSCLC whose disease has progressed following treatment with osimertinib and platinum-based chemotherapy.Podcast audio available for this article.
Collapse
Affiliation(s)
- Sandip Patel
- University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| | | |
Collapse
|
9
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
10
|
Pretelli G, Spagnolo CC, Ciappina G, Santarpia M, Pasello G. Overview on Therapeutic Options in Uncommon EGFR Mutant Non-Small Cell Lung Cancer (NSCLC): New Lights for an Unmet Medical Need. Int J Mol Sci 2023; 24:ijms24108878. [PMID: 37240224 DOI: 10.3390/ijms24108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of epidermal growth factor receptor (EGFR) mutations (85-90%) are exon 19 deletions and L858R point mutations of exon 21, characterized by high sensitivity to EGFR-tyrosine kinase inhibitors (TKIs). Less is known about uncommon mutations (10-15% of EGFR mutations). The predominant mutation types in this category include exon 18 point mutations, exon 21 L861X, exon 20 insertions, and exon 20 S768I. This group shows a heterogeneous prevalence, partly due to different testing methods and to the presence of compound mutations, which in some cases can lead to shorter overall survival and different sensitivity to different TKIs compared to simple mutations. Additionally, EGFR-TKI sensitivity may also vary depending on the specific mutation and the tertiary structure of the protein. The best strategy remains uncertain, and the data of EGFR-TKIs efficacy are based on few prospective and some retrospective series. Newer investigational agents are still under study, and there are no other approved specific treatments targeting uncommon EGFR mutations. Defining the best treatment option for this patient population remains an unmet medical need. The objective of this review is to evaluate existing data on the outcomes, epidemiology, and clinical characteristics of lung cancer patients with rare EGFR mutations, with a focus on intracranial activity and response to immunotherapy.
Collapse
Affiliation(s)
- Giulia Pretelli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98122 Messina, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98122 Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98122 Messina, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Oncologia Medica 2, Istituto Oncologico Veneto, IRCCS, 35128 Padova, Italy
| |
Collapse
|
11
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
12
|
Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17:18-42. [PMID: 36848029 DOI: 10.1007/s11684-022-0976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations ("target-dependent resistance") and in the parallel and downstream pathways ("target-independent resistance"). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
Collapse
Affiliation(s)
- Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Therapeutic strategies for non-small cell lung cancer: Experimental models and emerging biomarkers to monitor drug efficacies. Pharmacol Ther 2023; 242:108347. [PMID: 36642389 DOI: 10.1016/j.pharmthera.2023.108347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.
Collapse
|
14
|
Koulouris A, Tsagkaris C, Corriero AC, Metro G, Mountzios G. Resistance to TKIs in EGFR-Mutated Non-Small Cell Lung Cancer: From Mechanisms to New Therapeutic Strategies. Cancers (Basel) 2022; 14:3337. [PMID: 35884398 PMCID: PMC9320011 DOI: 10.3390/cancers14143337] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) of the epidermal growth factor receptor (EGFR) in advanced mutant Non-Small Cell Lung Cancer (NSCLC) constitutes a therapeutic challenge. This review intends to summarize the existing knowledge about the mechanisms of resistance to TKIs in the context of EGFR mutant NSCLC and discuss its clinical and therapeutic implications. EGFR-dependent and independent molecular pathways have the potential to overcome or circumvent the activity of EGFR-targeted agents including the third-generation TKI, osimertinib, negatively impacting clinical outcomes. CNS metastases occur frequently in patients on EGFR-TKIs, due to the inability of first and second-generation agents to overcome both the BBB and the acquired resistance of cancer cells in the CNS. Newer-generation TKIs, TKIs targeting EGFR-independent resistance mechanisms, bispecific antibodies and antibody-drug conjugates or combinations of TKIs with other TKIs or chemotherapy, immunotherapy and Anti-Vascular Endothelial Growth Factors (anti-VEGFs) are currently in use or under investigation in EGFR mutant NSCLC. Liquid biopsies detecting mutant cell-free DNA (cfDNA) provide a window of opportunity to attack mutant clones before they become clinically apparent. Overall, EGFR TKIs-resistant NSCLC constitutes a multifaceted therapeutic challenge. Mapping its underlying mutational landscape, accelerating the detection of resistance mechanisms and diversifying treatment strategies are essential for the management of the disease.
Collapse
Affiliation(s)
- Andreas Koulouris
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden;
- Faculty of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | - Anna Chiara Corriero
- School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, UK;
| | - Giulio Metro
- Giulio Metro, Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
| | - Giannis Mountzios
- Clinical Trials Unit, Fourth Department of Medical Oncology, Henry Dunant Hospital Center, 11526 Athens, Greece
| |
Collapse
|