1
|
Filippi L, Proietti I, Petrozza V, Potenza C, Bagni O, Schillaci O. The Prognostic Role of [ 18F]FDG PET/CT in Patients with Advanced Cutaneous Squamous Cell Carcinoma Submitted to Cemiplimab Immunotherapy: A Single-Center Retrospective Study. Cancer Biother Radiopharm 2024; 39:46-54. [PMID: 37883658 DOI: 10.1089/cbr.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Background: Baseline 2-deoxy-2[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET)-derived parameters and 12-week metabolic response were investigated as prognostic factors in advanced cutaneous squamous cell carcinoma (cSCC) submitted to cemiplimab immunotherapy. Materials and Methods: Clinical records of 25 cSCC patients receiving cemiplimab, submitted to [18F]FDG positron emission tomography/computed tomography (PET/CT) at baseline and after ∼12 weeks, were retrospectively reviewed. The Kaplan-Meier (KM) method was applied to analyze differences in event-free survival (EFS), and Cox regression analysis was employed to identify the prognostic factors. Results: At the 12-week PET/CT evaluation, 16 patients (64%) were classified as responders (complete or partial response) and 9 (36%) as nonresponders ("unconfirmed progressive metabolic disease") according to immune PET Response Criteria in Solid Tumors (iPERCIST). By KM analysis, baseline metabolic tumor volume (MTV) and total lesion glycolysis (TLG) significantly correlated with the EFS (p < 0.05). Furthermore, the KM analysis showed that the lack of metabolic response at 12 weeks was associated with meaningfully shorter EFS (7.2 ± 1 months in nonresponders vs. 20.3 ± 2.3 months in responders). In Cox multivariate analysis, metabolic response at 12 weeks remained the only predictor of the EFS (p < 0.05). Conclusions: Baseline tumor load (i.e., MTV and TLG) and metabolic response at 12 weeks may have a prognostic impact in cSCC patients treated with cemiplimab.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Ilaria Proietti
- Dermatology Unit "Daniele Innocenzi," "A. Fiorini" Hospital, Terracina, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Pathology Unit, ICOT Hospital, University of Rome "La Sapienza," Rome, Italy
| | - Concetta Potenza
- Dermatology Unit "Daniele Innocenzi," "A. Fiorini" Hospital, Terracina, Italy
| | - Oreste Bagni
- Nuclear Medicine Unit, Santa Maria Goretti Hospital, Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Chen Y, Guo Y, Liu Z, Hu X, Hu M. An overview of current advances of PD-L1 targeting immuno-imaging in cancers. J Cancer Res Ther 2023; 19:866-875. [PMID: 37675710 DOI: 10.4103/jcrt.jcrt_88_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The programmed death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a significant role in immune evasion. PD-1 or PD-L1 immune checkpoint inhibitors (ICIs) have become a standard treatment for multiple types of cancer. To date, PD-L1 has served as a biomarker for predicting the efficacy of ICIs in several cancers. The need to establish an effective detection method that could visualize PD-L1 expression and predict the efficacy of PD-1/PD-L1 ICIs has promoted a search for new imaging strategies. PD-L1-targeting immuno-imaging could provide a noninvasive, real-time, repeatable, dynamic, and quantitative assessment of the characteristics of all tumor lesions in individual patients. This study analyzed the existing evidence in the literature on PD-L1-based immuno-imaging (2015-2022). Original English-language articles were searched using PubMed and Google Scholar. Keywords, such as "PD-L1," "PET," "SPECT," "PET/CT," and "SPECT/CT," were used in various combinations. A total of nearly 50 preclinical and clinical studies of PD-L1-targeting immuno-imaging were selected, reviewed, and included in this study. Therefore, in this review, we conducted a study of the advances in PD-L1-targeting immuno-imaging for detecting the expression of PD-L1 and the efficacy of ICIs. We focused on the different types of PD-L1-targeting agents, including antibodies and small PD-L1-binding agents, and illustrated the strength and weakness of these probes. Furthermore, we summarized the trends in the development of PD-L1-targeting immuno-imaging, as well as the current challenges and future directions for clinical workflow.
Collapse
Affiliation(s)
- Yunhao Chen
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yujiao Guo
- Department of Oncology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Man Hu
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Massicano AVF, Song PN, Mansur A, White SL, Sorace AG, Lapi SE. [ 89Zr]-Atezolizumab-PET Imaging Reveals Longitudinal Alterations in PDL1 during Therapy in TNBC Preclinical Models. Cancers (Basel) 2023; 15:2708. [PMID: 37345044 PMCID: PMC10216761 DOI: 10.3390/cancers15102708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) currently have limited treatment options; however, PD-L1 is an indicator of susceptibility to immunotherapy. Currently, assessment of PD-L1 is limited to biopsy samples. These limitations may be overcome with molecular imaging. In this work, we describe chemistry development and optimization, in vitro, in vivo, and dosimetry of [89Zr]-Atezolizumab for PD-L1 imaging. Atezolizumab was conjugated to DFO and radiolabeled with 89Zr. Tumor uptake and heterogeneity in TNBC xenograft and patient-derived xenograft (PDX) mouse models were quantified following [89Zr]-Atezolizumab-PET imaging. PD-L1 expression in TNBC PDX models undergoing therapy and immunohistochemistry (IHC) was used to validate imaging. SUV from PET imaging was quantified and used to identify heterogeneity. PET/CT imaging using [89Zr]-Atezolizumab identified a significant increase in tumor:muscle SUVmean 1 and 4 days after niraparib therapy and revealed an increased trend in PD-L1 expression following other cytotoxic therapies. A preliminary dosimetry study indicated the organs that will receive a higher dose are the spleen, adrenals, kidneys, and liver. [89Zr]-Atezolizumab PET/CT imaging reveals potential for the noninvasive detection of PD-L1-positive TNBC tumors and allows for quantitative and longitudinal assessment. This has potential significance for understanding tumor heterogeneity and monitoring early expression changes in PD-L1 induced by therapy.
Collapse
Affiliation(s)
| | - Patrick N. Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sharon L. White
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suzanne E. Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Filippi L, Proietti I, Petrozza V, Aversa S, Fiorentino F, Potenza C, Bagni O, Schillaci O, Cantonetti M. [ 18F]FDG PET/CT in a Case of Mycosis Fungoides Showing an Unusual Adverse Reaction to Mogamulizumab: Correlation Between Imaging and Histological Findings. Cancer Biother Radiopharm 2023; 38:268-272. [PMID: 36706264 DOI: 10.1089/cbr.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 73-year-old female patient, affected by mycosis fungoides (MF), discontinued mogamulizumab, after initial clinical benefit, due to the onset of generalized erythema. Follow-up positron emission computed tomography (PET/CTs) carried out at 3 weeks and 6 months after therapy discontinuation showed, with respect to baseline PET/CT scan, a progressively increasing number of hypermetabolic enlarged lymph nodes suspected for a neoplastic involvement, but with histology indicative of an inflammatory reaction. After sequential therapy with corticosteroids and methotrexate, a complete remission was registered at 18F-fluorodeoxyglucose ([18F]FDG) PET/CT performed at 12 months after mogamulizumab interruption. The case we describe highlights the usefulness of serial examinations with [18F]FDG PET/CT in an MF patient presenting an unusual adverse reaction to mogamulizumab.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Ilaria Proietti
- Dermatology Unit "Daniele Innocenzi," "A. Fiorini" Hospital, Terracina, Italy
| | - Vincenzo Petrozza
- Pathology Unit, Department of Medico-Surgical Sciences and Biotechnologies, ICOT Hospital, University of Rome "La Sapienza," Italy
| | - Sara Aversa
- Pathology Unit, Department of Medico-Surgical Sciences and Biotechnologies, ICOT Hospital, University of Rome "La Sapienza," Italy
| | - Francesco Fiorentino
- Pathology Unit, Santa Maria Goretti Hospital of Latina-ASL Latina, Latina, Italy
| | - Concetta Potenza
- Dermatology Unit "Daniele Innocenzi," "A. Fiorini" Hospital, Terracina, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Maria Cantonetti
- Hematology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
5
|
Crombé A, Roulleau‐Dugage M, Italiano A. The diagnosis, classification, and treatment of sarcoma in this era of artificial intelligence and immunotherapy. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1288-1313. [PMID: 36260064 PMCID: PMC9759765 DOI: 10.1002/cac2.12373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Soft-tissue sarcomas (STS) represent a group of rare and heterogeneous tumors associated with several challenges, including incorrect or late diagnosis, the lack of clinical expertise, and limited therapeutic options. Digital pathology and radiomics represent transformative technologies that appear promising for improving the accuracy of cancer diagnosis, characterization and monitoring. Herein, we review the potential role of the application of digital pathology and radiomics in managing patients with STS. We have particularly described the main results and the limits of the studies using radiomics to refine diagnosis or predict the outcome of patients with soft-tissue sarcomas. We also discussed the current limitation of implementing radiomics in routine settings. Standard management approaches for STS have not improved since the early 1970s. Immunotherapy has revolutionized cancer treatment; nonetheless, immuno-oncology agents have not yet been approved for patients with STS. However, several lines of evidence indicate that immunotherapy may represent an efficient therapeutic strategy for this group of diseases. Thus, we emphasized the remarkable potential of immunotherapy in sarcoma treatment by focusing on recent data regarding the immune landscape of these tumors. We have particularly emphasized the fact that the development of immunotherapy for sarcomas is not an aspect of histology (except for alveolar soft-part sarcoma) but rather that of the tumor microenvironment. Future studies investigating immunotherapy strategies in sarcomas should incorporate at least the presence of tertiary lymphoid structures as a stratification factor in their design, besides including a strong translational program that will allow for a better understanding of the determinants involved in sensitivity and treatment resistance to immune-oncology agents.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of ImagingInstitut BergoniéBordeauxNouvelle‐AquitaineF‐33076France,Faculty of MedicineUniversity of BordeauxBordeauxNouvelle‐AquitaineF‐33000France
| | | | - Antoine Italiano
- Faculty of MedicineUniversity of BordeauxBordeauxNouvelle‐AquitaineF‐33000France,Early Phase Trials and Sarcoma UnitInstitut BergoniéBordeauxNouvelle‐AquitaineF‐33076France
| |
Collapse
|
6
|
Li C, Liu J, Yang X, Yang Q, Huang W, Zhang M, Zhou D, Wang R, Gong J, Miao Q, Kang L, Yang J. Theranostic application of 64Cu/ 177Lu-labeled anti-Trop2 monoclonal antibody in pancreatic cancer tumor models. Eur J Nucl Med Mol Imaging 2022; 50:168-183. [PMID: 36063202 DOI: 10.1007/s00259-022-05954-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Pancreatic cancer is a malignant tumor with a high degree of malignancy, strong heterogeneity, and high lethality. Trop2 is a transmembrane glycoprotein associated with the occurrence, development, and poor prognosis of pancreatic cancer. This study aims to develop 64Cu/177Lu-labeled anti-Trop2 monoclonal antibody (hIMB1636) for positron emission tomography (PET) imaging and radioimmunotherapy (RIT) application in pancreatic cancer tumor models. METHODS The binding kinetics of hIMB1636 to Trop2 antigen was measured by Biolayer interferometry (BLI). Western blotting was used to screen the Trop2 expression of pancreatic cancer cell lines. Flow cytometry and cell immunofluorescence were used to evaluate the binding ability of hIMB1636 and Trop2 on the cell surface. hIMB1636 were conjugated with p-SCN-Bn-NOTA (NOTA) and DOTA-NHS-ester (DOTA) for 64Cu and 177Lu radiolabeling respectively. ImmunoPET imaging and RIT studies were performed using 64Cu-NOTA-hIMB1636 and 177Lu-DOTA-hIMB1636 in subcutaneous pancreatic cancer tumor models. RESULTS hIMB1636 had a strong binding affinity to Trop2 according to the results of BLI. The T3M-4 cell line showed the strongest expression of Trop2 and specific binding ability of hIMB1636 according to the results of Western blotting, flow cytometry, and cell immunofluorescence. The radiochemical purity of 64Cu-NOTA-hIMB1636 and 177Lu-DOTA-hIMB1636 exceeded 95%. PET imaging showed gradually an accumulation of 64Cu-NOTA-hIMB1636 in T3M-4 tumor models. The maximum tumor uptake was 8.95 ± 1.07%ID/g (n = 4) at 48 h post injection (p.i.), which had significant differences with T3M-4-blocked and PaTu8988-negative groups (P < 0.001). The high-177Lu-hIMB1636 group demonstrated the strongest tumor suppression with standardized tumor volume about 94.24 ± 14.62% (n = 5) at 14 days p.i., significantly smaller than other groups (P < 0.05). Ex vivo biodistribution and histological staining verified the in vivo PET imaging and RIT results. CONCLUSIONS This study demonstrated that 64Cu/177Lu-labeled hIMB1636 could noninvasively evaluate the expression level of Trop2 and inhibit the Trop2-overexpressed tumor growth in pancreatic cancer tumor models. Further clinical evaluation and translation of Trop2-targeted drug may be of great help in the stratification and management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China.,Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
| | - Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
| | - Dandan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist., Beijing, 100050, China
| | - Rong Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist., Beijing, 100050, China.
| | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist., Beijing, 100050, China.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China.
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China.
| |
Collapse
|
7
|
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)-Quo Vadis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103354. [PMID: 35630835 PMCID: PMC9147562 DOI: 10.3390/molecules27103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The use of immunotherapy has revolutionized the treatment regimen of certain cancer types, but response assessment has become a difficult task with conventional methods such as CT/MRT or FDG PET-CT and the classical response criteria such as RECIST or PERCIST which have been developed for chemotherapeutic treatment. Plenty of new tracers have been published to improve the assessment of treatment response and to stratify the patient population. We gathered the information on published tracers (in total, 106 individual SPECT/PET tracers were identified) and performed a descriptor-based analysis; in this way, we classify the tracers with regard to target choice, developability (probability to progress from preclinical stage into the clinic), translatability (probability to be widely applied in the 'real world'), and (assumed) diagnostic quality. In our analysis, we show that most tracers are targeting PD-L1, PD-1, CTLA-4, and CD8 receptors by using antibodies or their fragments. Another finding is that plenty of tracers possess only minor iterations regarding chelators and nuclides instead of approaching the problem in a new innovative way. Based on the data, we suggest an orthogonal approach by targeting intracellular targets with PET-activatable small molecules that are currently underrepresented.
Collapse
Affiliation(s)
- Carsten S. Kramer
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, D-65191 Wiesbaden, Germany
- Correspondence:
| | | |
Collapse
|
8
|
Filippi L, Proietti I, Petrozza V, Bagni O, Schillaci O. Cutaneous Squamous Cell Carcinoma Subjected to Anti PD-1 Immunotherapy: Monitoring Response Through Serial PET/CT Scans with 18F-FDG. Cancer Biother Radiopharm 2022; 37:226-232. [PMID: 35128935 DOI: 10.1089/cbr.2021.0368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The effectiveness of 18F-fluorodeoxyglucose (18F-FDG) positron emission computed tomography (PET/CT) for monitoring response to immunotherapy (IT) with cemiplimab in patients affected by cutaneous squamocellular carcinoma (cSCC) was investigated. Materials and Methods: Thirteen cSCC patients performed PET/CT at baseline (PET-1) and 3 months after IT (PET-2). According to immune PET Response Criteria in Solid Tumors (iPERCIST), patients showing progressive disease at PET-2 were classified as having "unconfirmed progressive metabolic disease" (uPMD) and were scheduled to perform a further PET/CT (PET-3) after 4 weeks. PET/CT's results were correlated with best clinical response (BCR) categorized, within 6 months from the start of IT, as clinical benefit (CB) or no clinical benefit (NCB) according to clinical follow-up. Results: At PET-2, 9 subjects (69.2%) showed metabolic response, whereas four (30.8%) were classified as uPMD. After 4 weeks, three uPMD patients were subjected to PET-3, which confirmed progressive disease in all cases, whereas 1 patient with uPMD did not undergo PET-3 due to clinical deterioration. All subjects with metabolic response at PET-2 were classified as having CB and continued IT in 8 out of 9 cases, whereas all patients with uPMD were categorized as NCB and discontinued IT. Conclusions: PET/CT, performed in cSCC patients after 3 months of cemiplimab, resulted capable to identify responders from nonresponders.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Ilaria Proietti
- Dermatology Unit "Daniele Innocenzi," "A. Fiorini" Hospital, Terracina, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Pathology Unit, ICOT Hospital, "Sapienza" University of Rome, Latina, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|