1
|
Yoneda K, Hosomi S, Ito H, Togami Y, Oda S, Matsumoto H, Shimazaki J, Ogura H, Oda J. How can heatstroke damage the brain? A mini review. Front Neurosci 2024; 18:1437216. [PMID: 39450121 PMCID: PMC11499184 DOI: 10.3389/fnins.2024.1437216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Record-breaking heat waves over the past 20 years have led to a global increase in heat-related deaths, including heatstroke. Heat-related illnesses occur when the body cannot adapt to the elevated temperatures in the environment, leading to various symptoms. In severe situations, such as heatstroke, the body temperature can rise above 40°C, leading to significant injury to body systems, with particular susceptibility of the central nervous system (CNS). Neuroimaging studies conducted months or years after a heatstroke have revealed cellular damage in the cerebellum and other brain regions, including the hippocampus, midbrain, and thalamus, with the potential for long-term neurological complications in survivors of a heatstroke. This mini review aimed to describe the mechanisms and pathways underlying the development of brain injury induced by heatstroke and identify diagnostic imaging tools and biomarkers for injury to the CNS due to a heatstroke.
Collapse
Affiliation(s)
- Kazuhiro Yoneda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sayaka Oda
- Laboratory of Human Immunology (Single Cell Genomics), WPI Osaka University Immunology Research Center, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Junya Shimazaki
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Tsai MH, Wu CY, Wu CH, Chen CY. The Current Update of Conventional and Innovative Treatment Strategies for Central Nervous System Injury. Biomedicines 2024; 12:1894. [PMID: 39200357 PMCID: PMC11351448 DOI: 10.3390/biomedicines12081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This review explores the complex challenges and advancements in the treatment of traumatic brain injury (TBI) and spinal cord injury (SCI). Traumatic injuries to the central nervous system (CNS) trigger intricate pathophysiological responses, frequently leading to profound and enduring disabilities. This article delves into the dual phases of injury-primary impacts and the subsequent secondary biochemical cascades-that worsen initial damage. Conventional treatments have traditionally prioritized immediate stabilization, surgical interventions, and supportive medical care to manage both the primary and secondary damage associated with central nervous system injuries. We explore current surgical and medical management strategies, emphasizing the crucial role of rehabilitation and the promising potential of stem cell therapies and immune modulation. Advances in stem cell therapy, gene editing, and neuroprosthetics are revolutionizing treatment approaches, providing opportunities not just for recovery but also for the regeneration of impaired neural tissues. This review aims to emphasize emerging therapeutic strategies that hold promise for enhancing outcomes and improving the quality of life for affected individuals worldwide.
Collapse
Affiliation(s)
- Meng-Hsuan Tsai
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chi-Ying Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chao-Hsin Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| |
Collapse
|
3
|
Liu S, Shi L, Huang T, Luo Y, Chen Y, Li S, Wang Z. Neural Stem Cells Transplanted into Rhesus Monkey Cortical Traumatic Brain Injury Can Survive and Differentiate into Neurons. Int J Mol Sci 2024; 25:1642. [PMID: 38338922 PMCID: PMC10855641 DOI: 10.3390/ijms25031642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Cortical traumatic brain injury (TBI) is a major cause of cognitive impairment accompanied by motor and behavioral deficits, and there is no effective treatment strategy in the clinic. Cell transplantation is a promising therapeutic strategy, and it is necessary to verify the survival and differentiation of cells after transplantation in large animal models like rhesus monkeys. In this study, we transplanted neural stem cells (NSCs) and simultaneously injected basic fibroblast growth factor/epidermal growth factor (bFGF/EGF) into the cortex (visual and sensory cortices) of rhesus monkeys with superficial TBI. The results showed that the transplanted NSCs did not enter the cerebrospinal fluid (CSF) and were confined to the transplantation site for at least one year. The transplanted NSCs differentiated into mature neurons that formed synaptic connections with host neurons, but glial scar formation between the graft and the host tissue did not occur. This study is the first to explore the repairing effect of transplanting NSCs into the superficial cerebral cortex of rhesus monkeys after TBI, and the results show the ability of NSCs to survive long-term and differentiate into neurons, demonstrating the potential of NSC transplantation for cortical TBI.
Collapse
Affiliation(s)
- Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Liping Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; (S.L.); (L.S.); (T.H.); (Y.L.); (S.L.)
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|