1
|
Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM. Prevention of Parkinson's Disease: From Risk Factors to Early Interventions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:746-760. [PMID: 37326115 DOI: 10.2174/1871527322666230616092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Brendan Jun Lam Chan
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500 Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
4
|
Ghanta MK, Elango P, L V K S B. Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson's Disease. Curr Pharm Des 2020; 26:4738-4746. [PMID: 32065086 DOI: 10.2174/1381612826666200217114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson's disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.
Collapse
Affiliation(s)
- Mohan K Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai-600116, Tamil Nadu, India
| | - P Elango
- Department of Pharmacology, Panimalar Medical College Hospital & Research Institute, Poonamallee, Chennai-600123, Tamil Nadu, India
| | - Bhaskar L V K S
- Department of Zoology, Guru Ghasidas University, Bilaspur, 495009 (CG), India
| |
Collapse
|
5
|
Teixeira FG, Vilaça-Faria H, Domingues AV, Campos J, Salgado AJ. Preclinical Comparison of Stem Cells Secretome and Levodopa Application in a 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cells 2020; 9:cells9020315. [PMID: 32012897 PMCID: PMC7072263 DOI: 10.3390/cells9020315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is characterized by the massive loss of dopaminergic neurons, leading to the appearance of several motor impairments. Current pharmacological treatments, such as the use of levodopa, are yet unable to cure the disease. Therefore, there is a need for novel strategies, particularly those that can combine in an integrated manner neuroprotection and neuroregeneration properties. In vitro and in vivo models have recently revealed that the secretome of mesenchymal stem cells (MSCs) holds a promising potential for treating PD, given its effects on neural survival, proliferation, differentiation. In the present study, we aimed to access the impact of human bone marrow MSCs (hBM-MSCs) secretome in 6-hydroxydopamine (6-OHDA) PD model when compared to levodopa administration, by addressing animals' motor performance, and substantia nigra (SN), and striatum (STR) histological parameters by tyrosine hydroxylase (TH) expression. Results revealed that hBM-MSCs secretome per se appears to be a modulator of the dopaminergic system, enhancing TH-positive cells expression (e.g., dopaminergic neurons) and terminals both in the SN and STR when compared to the untreated group 6-OHDA. Such finding was positively correlated with a significant amelioration of the motor outcomes of 6-OHDA PD animals (assessed by the staircase test). Thus, the present findings support hBM-MSCs secretome administration as a potential therapeutic tool in treating PD, and although we suggest candidate molecules (Trx1, SEMA7A, UCHL1, PEDF, BDNF, Clusterin, SDF-1, CypA, CypB, Cys C, VEGF, DJ-1, Gal-1, GDNF, CDH2, IL-6, HSP27, PRDX1, UBE3A, MMP-2, and GDN) and possible mechanisms of hBM-MSCs secretome-mediated effects, further detailed studies are needed to carefully and clearly define which players may be responsible for its therapeutic actions. By doing so, it will be reasonable to presume that potential treatments that can, per se, or in combination modulate or slow PD may lead to a rational design of new therapeutic or adjuvant strategies for its functional modeling and repair.
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
- Correspondence: (F.G.T.); (A.J.S.); Tel.: +351-253-60-48-71 (F.G.T.); +351-253-60-49-47 (A.J.S.)
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
| | - Ana V. Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
- Correspondence: (F.G.T.); (A.J.S.); Tel.: +351-253-60-48-71 (F.G.T.); +351-253-60-49-47 (A.J.S.)
| |
Collapse
|
6
|
Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019; 17:563-579. [PMID: 29676231 PMCID: PMC6712296 DOI: 10.2174/1570159x16666180419141613] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
| | | | - Zhengzhi Wu
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| | - Meiqun Cao
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| |
Collapse
|
7
|
He R, Yan X, Guo J, Xu Q, Tang B, Sun Q. Recent Advances in Biomarkers for Parkinson's Disease. Front Aging Neurosci 2018; 10:305. [PMID: 30364199 PMCID: PMC6193101 DOI: 10.3389/fnagi.2018.00305] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is one of the common progressive neurodegenerative disorders with several motor and non-motor symptoms. Most of the motor symptoms may appear at a late stage where most of the dopaminergic neurons have been already damaged. In order to provide better clinical intervention and treatment at the onset of disease, it is imperative to find accurate biomarkers for early diagnosis, including prodromal diagnosis and preclinical diagnosis. At the same time, these reliable biomarkers can also be utilized to monitor the progress of the disease. In this review article, we will discuss recent advances in the development of PD biomarkers from different aspects, including clinical, biochemical, neuroimaging and genetic aspects. Although various biomarkers for PD have been developed so far, their specificity and sensitivity are not ideal when applied individually. So, the combination of multimodal biomarkers will greatly improve the diagnostic accuracy and facilitate the implementation of personalized medicine.
Collapse
Affiliation(s)
- Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Rahman S, Jan AT, Ayyagari A, Kim J, Kim J, Minakshi R. Entanglement of UPR ER in Aging Driven Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:341. [PMID: 29114219 PMCID: PMC5660724 DOI: 10.3389/fnagi.2017.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is an indispensable cellular organelle that remains highly active in neuronal cells. The ER bears the load of maintaining protein homeostasis in the cellular network by managing the folding of incoming nascent peptides; however, the stress imposed by physiological/environmental factors can cause ER dysfunctions that lead to the activation of ER unfolded protein response (UPRER). Aging leads to deterioration of several cellular pathways and therefore weakening of the UPRER. The decline in functioning of the UPRER during aging results in accumulation of misfolded proteins that becomes intracellular inclusions in neuronal cells, resulting in toxicity manifested as neurodegenerative diseases. With ascension in cases of neurodegenerative diseases, understanding the enigma behind aging driven UPRER dysfunction may lead to possible treatments.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Archana Ayyagari
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jiwoo Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Yulug B, Hanoglu L, Kilic E. The neuroprotective effect of focused ultrasound: New perspectives on an old tool. Brain Res Bull 2017; 131:199-206. [PMID: 28458041 DOI: 10.1016/j.brainresbull.2017.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Transcranial focused ultrasound (tFUS) is a novel technique that can noninvasively modulate the cortical function. Moreover, there are rapidly replicating evidence suggesting the role of tFUS for targeted neuroprotective drug delivery by increasing the permeability of the central nervous system barrier that results with increased neuroprotective activity. In contrast to the indirect neuroprotective effect, there is rare evidence suggesting the direct parenchymal neuroprotective effect of transcranial focused ultrasound (tFUS). In the light of these findings, we aimed to review the direct and indirect neuroprotective effect of FUS in various animal models of Stroke, Parkinson's Disease, Alzheimer's Disease and Major Depressive Disorder. METHODS A literary search was conducted, utilizing search terms "animal", "focused ultrasound", "neuroprotection", "Alzheimer's Disease", "Parkinson's Disease ", "Stroke", "Neurodegenerative disease" and "Major Depressive Disorder". Items were excluded if they failed to: (1) include patients, (2) editorials, and letters. RESULTS This mini-review article presents an up-to-date review of the neuroprotective effects of tFUS in animal studies and suggests the dual neurotherapeutic role of tFUS in various neurodegenerative diseases. CONCLUSION Future well-conducted human studies are emergently needed to assess the neuroprotective effects of FUS.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey.
| | - Lutfu Hanoglu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| |
Collapse
|