1
|
Kim HK, Chung KM, Xing J, Kim HY, Youn DH. The Trigeminal Sensory System and Orofacial Pain. Int J Mol Sci 2024; 25:11306. [PMID: 39457088 PMCID: PMC11508441 DOI: 10.3390/ijms252011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The trigeminal sensory system consists of the trigeminal nerve, the trigeminal ganglion, and the trigeminal sensory nuclei (the mesencephalic nucleus, the principal nucleus, the spinal trigeminal nucleus, and several smaller nuclei). Various sensory signals carried by the trigeminal nerve from the orofacial area travel into the trigeminal sensory system, where they are processed into integrated sensory information that is relayed to higher sensory brain areas. Thus, knowledge of the trigeminal sensory system is essential for comprehending orofacial pain. This review elucidates the individual nuclei that comprise the trigeminal sensory system and their synaptic transmission. Additionally, it discusses four types of orofacial pain and their relationship to the system. Consequently, this review aims to enhance the understanding of the mechanisms underlying orofacial pain.
Collapse
Affiliation(s)
- Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ki-myung Chung
- Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Juping Xing
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
2
|
Qiu E, Xing X, Wang Y, Tian L. Altered functional connectivity of the thalamus and salience network in patients with cluster headache: a pilot study. Neurol Sci 2024; 45:269-276. [PMID: 37578630 DOI: 10.1007/s10072-023-07011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Previous studies have shown that the salience network (SN) and the thalamus are involved in cluster headache (CH) attacks. However, very little is known regarding the altered thalamus-SN functional connectivity in CH. The aim of this study was to explore alterations of functional connectivity between the thalamus and the SN in patients with CH to further gain insight into the pathophysiology of CH. MATERIALS AND METHODS The resting-state functional MRI (rs-fMRI) data of 21 patients with CH in the headache attack remission state during in-bout periods and 21 age- and sex-matched normal controls were obtained. The rs-fMRI data were analyzed by the independent component analysis (ICA) method, and the thalamus-SN functional connectivity in patients with right-sided and left-sided CH was compared with that in normal controls. RESULTS Decreased functional connectivity was found between the thalamus, both ipsilateral and contralateral to the headache side, and the SN during headache remission state in both right-sided CH patients and left-sided CH patients. CONCLUSIONS The findings suggest that the decreased functional connectivity between the thalamus and SN might be one of the pathologies underpinning the CH. This helps us to understand better the nature of the brain dysfunction in CH and the basic pathologies of CH, which implies that this deserves further investigation.
Collapse
Affiliation(s)
- Enchao Qiu
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Xinbo Xing
- Department of Radiology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yan Wang
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lixia Tian
- Department of Biomedical Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
3
|
Chen Y, Xing X, Dai W, Tian L, Dong Z, Yu S. Brain regions involved in fractional amplitude of low-frequency fluctuation in cluster headache patients: a resting-state functional MRI study. BMC Neurol 2022; 22:336. [PMID: 36071405 PMCID: PMC9450424 DOI: 10.1186/s12883-022-02863-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We used resting-state functional magnetic resonance imaging (RS-fMRI) to assess the possible pathogenic role of fALFF in CH. A limited number of studies have reported on fractional amplitude of low-frequency fluctuation (fALFF) in cluster headache (CH). METHODS RS-fMRI scans of 23 patients with CH were obtained (11with left-sided headache and 12 with right-sided headache), along with scans of 23 age- and sex-matched normal controls. The RS-fMRI data were analyzed to explore abnormal brain activity in the left CH and right CH patients during the non-painful state in one cluster period. fALFF was compared between patients and controls, and correlation analysis between the regional mean fALFF values and clinical characteristics was performed. RESULTS A decrease in fALFF was detected in the left cerebellum, left lentiform nucleus, left frontal lobe, left anterior cingulate, and right postcentral gyrus in the left CH group compared to the controls, while a decrease of fALFF was detected in the right cerebellum, right cingulate gyrus, right superior parietal lobule, right inferior parietal lobule, right postcentral gyrus, and left precuneus in the right CH group. No patient had a region with increased fALFF. A moderate correlation was observed between some regional mean fALFF values and the clinical characteristics. CONCLUSIONS We deduced that dysfunction in multiple brain areas is involved in the non-painful state of CH during a cluster period.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Chinese PLA General Hospital; International headache center, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, 100853, China.,Department of Neurology, Peking University Shougang Hospital, Beijing, 100144, China
| | - Xinbo Xing
- Department of Radiology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Wei Dai
- Department of Neurology, Chinese PLA General Hospital; International headache center, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, 100853, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital; International headache center, Chinese PLA General Hospital, Beijing, China.
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital; International headache center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Cui J, Peng W, Yi T, Gao P, Zhou M, Zhu T. No significant association between SNPs in the CLOCK and ADH4 genes and susceptibility to cluster headaches: A systematic review and meta-analysis. Ann Hum Genet 2022; 86:159-170. [PMID: 35437765 DOI: 10.1111/ahg.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The circadian locomotor output cycles kaput (CLOCK) gene and the alcohol dehydrogenase 4 (ADH4) gene are promising candidates for susceptibility to cluster headaches (CH). Associations of the three single nucleotide polymorphisms (SNPs)-CLOCK SNP rs1801260 and ADH4 SNPs rs1800759, and rs1126671-with CH were studied previously, but the results were inconsistent. METHODS Associations between the three SNPs (rs1801260, rs1126671, and rs1800759) and CH risk were separately assessed by pooled odds ratios (ORs) along with 95% confidence intervals (95% CIs) based on five different genetic models. Methodological quality was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). All statistical analyses were carried out with RevMan 5.3 software. RESULTS Eight studies involving 1437 CH patients and 2541 healthy controls were selected for quantitative synthesis, from five studies on CLOCK rs1801260, five on ADH4 rs1800759, and three on ADH4 rs1126671. Our pooled data did not support associations between the three SNPs (rs1801260 in the CLOCK gene, rs1800759 and rs1126671 in the ADH4 gene) and susceptibility to CH (rs1801260: OR 1.10, 95% CI: 0.95-1.28; p = 0.19; rs1800759: OR 1.06, 95% CI: 0.93-1.22; p = 0.37; and rs1126671: OR 1.09, 95% CI: 0.92-1.28; p = 0.32). CONCLUSION We found no significant associations between the three SNPs (rs1801260 in the CLOCK gene and rs1800759 and rs1126671 in the ADH4 gene) and the susceptibility to CH across both Caucasian and Asian ethnicities in our meta-analysis.
Collapse
Affiliation(s)
- Jiarui Cui
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Yi
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Gao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingze Zhou
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Papasavva M, Vikelis M, Siokas V, Katsarou MS, Dermitzakis E, Raptis A, Dardiotis E, Drakoulis N. VDR Gene Polymorphisms and Cluster Headache Susceptibility: Case-Control Study in a Southeastern European Caucasian Population. J Mol Neurosci 2021; 72:382-392. [PMID: 34519950 DOI: 10.1007/s12031-021-01892-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Cluster headache (CH) is a severe primary headache disorder with a genetic component, as indicated by family and twin studies. Diurnal and seasonal rhythmicity are key features of the disease and might be related to vitamin D, as low vitamin D levels have been observed in patients with cluster headache. In addition, the vitamin D receptor (VDR) occurs in brain areas and particularly in the hypothalamus. The aim of the present case-control study was to investigate the association of cluster headache susceptibility and clinical phenotypes with the VDR gene polymorphisms FokI, BsmI and TaqI in a Southeastern European Caucasian population. DNA was extracted from 131 unrelated CH patients and 282 non-headache controls and genotyped using real-time PCR (melting curve analysis). Linkage disequilibrium (LD) analysis confirmed that BsmI and TaqI, both located in the 3'UTR of the VDR gene, are in strong LD. Genotype and allele frequency distribution analysis of the VDR FokI, BsmI, and TaqI polymorphisms showed no statistically significant difference between cases and controls, whereas haplotype analysis indicated that the TAC haplotype might be associated with decreased cluster headache susceptibility. Intra-patient analysis according to diverse clinical phenotypes showed an association of the BsmI GG and TaqI TT genotypes with more frequent occurrence of CH attacks in this cohort. Therefore, a possible association was observed between VDR gene polymorphisms BsmI and TaqI or a linked locus and susceptibility for cluster headache development and altered clinical phenotypes in the Southeastern European Caucasian study population. Further large-scale replication studies are needed to validate these findings.
Collapse
Affiliation(s)
- Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | | | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | | | - Athanasios Raptis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
6
|
Yang J, Yu SY, Yang J, Kong J, Liang FR, Lv ZT. No Association Between G1246A Polymorphism in HCRTR2 Gene and Risk of Cluster Headache: Evidence From an Updated Meta-Analysis of Observational Studies. Front Genet 2020; 11:560517. [PMID: 33343621 PMCID: PMC7744679 DOI: 10.3389/fgene.2020.560517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background: The hypocretin receptor 2 (HCRTR2) gene may play a pathological role in cluster headache (CH). However, the conclusions of published reports on the relationship between the G1246A polymorphism (rs2653349) in the HCRTR2 gene and risk of CH remain controversial. This purpose of this article is to comprehensively study the current evidence and assess the association between G1246A polymorphism (rs2653349) in the HCRTR2 gene and risk of CH. Materials and Methods: Four electronic databases—ISI Web of Science, CNKI, PubMed, and EMBASE—were comprehensively searched on August 2020 to find and pinpoint all observational articles related to this study. The association between G1246A polymorphism in the HCRTR2 gene and risk of CH under five different genetic models was evaluated based on the summary odds ratio and corresponding 95 confidence interval (95% CI). Methodological quality was assessed based on the Newcastle–Ottawa Scale (NOS). To assist the analysis, RevMan 5.3 software was used to perform subgroup and sensitivity analyses. Egger's and Begg's tests were then conducted to evaluate and assess publication bias. Finally, a meta-regression was carried out by residual (restricted) maximum likelihood (REML). Results: Eight observation studies containing 3,161 healthy controls and 1,964 patients with CH were identified and to be used for the meta-analysis. With methodological quality NOS assessment, the incorporated studies showed an average score of 6.4 stars. The pooled data didn't support the association between G1246A polymorphism in the HCRTR2 gene and CH vulnerability in the overall population (OR: 0.85, 95% CI 0.69, 1.03; p = 0.10). Subgroup analysis by ethnicity showed no significant association between G1246A and CH in either Caucasians (OR: 0.89, 95% CI 0.77, 1.01; p = 0.08) or Asians (OR: 1.65, 95% CI 0.80, 3.41; p = 0.18). The robustness of the conclusion was tested and confirmed with the leave-one-out sensitivity analysis. Meta-regression analysis showed that chronological order of publication appeared to be significantly associated with the heterogeneity (t = 2.47, p = 0.039; residual I2 = 0%, adjusted R2 = 100%). Conclusion: Our present study showed that the G1246A polymorphism in the HCRTR2 gene did not appear to be an accomplice and associated with CH predisposition among either the Asian or Caucasian population.
Collapse
Affiliation(s)
- Jiao Yang
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Yi Yu
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Yang
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Kong
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan-Rong Liang
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng-Tao Lv
- Department of Orthopedics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
D'Amico D, Raggi A, Grazzi L, Lambru G. Disability, Quality of Life, and Socioeconomic Burden of Cluster Headache: A Critical Review of Current Evidence and Future Perspectives. Headache 2020; 60:809-818. [DOI: 10.1111/head.13784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Domenico D'Amico
- Neuroalgology Unit and Headache Center Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Alberto Raggi
- Neurology, Public Health and Disability Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Licia Grazzi
- Neuroalgology Unit and Headache Center Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Giorgio Lambru
- Guy's and St Thomas' NHS Foundation Trust King's College London London UK
| |
Collapse
|
8
|
Genetic Screening of Plasticity Regulating Nogo-Type Signaling Genes in Migraine. Brain Sci 2019; 10:brainsci10010005. [PMID: 31861860 PMCID: PMC7016645 DOI: 10.3390/brainsci10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022] Open
Abstract
Migraine is the sixth most prevalent disease in the world and a substantial number of experiments have been conducted to analyze potential differences between the migraine brain and the healthy brain. Results from these investigations point to the possibility that development and aggravation of migraine may include grey matter plasticity. Nogo-type signaling is a potent plasticity regulating system in the CNS and consists of ligands, receptors, co-receptors and modulators with a dynamic age- and activity-related expression in cortical and subcortical regions. Here we investigated a potential link between migraine and five key Nogo-type signaling genes: RTN4, OMGP, MAG, RTN4R and LINGO1, by screening 15 single nucleotide polymorphisms (SNPs) within these genes. In a large Swedish migraine cohort (749 migraine patients and 4032 controls), using a logistic regression with sex as covariate, we found that there was no such association. In addition, a haplotype analysis was performed which revealed three haplotype blocks. These blocks had no significant association with migraine. However, to robustly conclude that Nogo-type genotypes signaling do not influence the prevalence of migraine, further studies are encouraged.
Collapse
|
9
|
Analysis of HCRTR2, GNB3, and ADH4 Gene Polymorphisms in a Southeastern European Caucasian Cluster Headache Population. J Mol Neurosci 2019; 70:467-474. [PMID: 31768945 DOI: 10.1007/s12031-019-01439-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Studies point to an increased hereditary risk of cluster headache. HCRTR2 gene rs2653349 and ADH4 gene rs1800759 polymorphisms have been associated with cluster headache susceptibility. Also, GNB3 rs5443 polymorphism, associated with increased signal transduction via GPCRs, seems to influence triptan treatment response. DNA from 114 cluster headache patients and 570 non-related controls, representing a general Southeastern European Caucasian (SEC) population, was extracted from buccal swabs and genotyped using real-time PCR. Gene distribution for the rs2653349 was GG = 79.8%, GA = 18.4%, and AA = 1.8% for patients and GG = 79.1%, GA = 19.1%, and AA = 1.8% for controls. The frequency of the mutated A allele was 11.0% for patients and 11.3% for controls. The frequencies for rs5443 were CC = 44.7%, CT = 44.7%, and TT = 10.5% for patients and CC = 43.9%, CT = 42.6%, and TT = 13.5% for controls. The frequency of the mutated T allele was 32.9% for patients and 34.8% for controls. A 2.7-fold more frequent appearance of the mutated T allele was observed in patients with better triptan treatment response, although not statistically significant. For rs1800759, the frequencies were CC = 36.0%, CA = 43.0%, and AA = 21.0% for patients and CC = 34.0%, CA = 50.2%, and AA = 15.8% for controls. The frequency of the mutated A allele was 42.5% and 40.9% for patients and controls, respectively. The mutated T allele of GNB3 rs5443 polymorphism was more prevalent in patients with better triptan treatment response, indicating a possible trend of association between this polymorphism and triptan treatment response in SEC population. According to our observation, no association of HCRTR2 rs2653349 and ADH4 rs1800759 polymorphisms and cluster headache in SEC population could be documented.
Collapse
|
10
|
Ferraro S, Nigri A, Bruzzone MG, Demichelis G, Pinardi C, Brivio L, Giani L, Proietti A, Leone M, Chiapparini L. Cluster headache: insights from resting-state functional magnetic resonance imaging. Neurol Sci 2019; 40:45-47. [PMID: 30941629 DOI: 10.1007/s10072-019-03874-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The comprehension of cluster headache (CH) has greatly benefited from the tremendous progress of the neuroimaging techniques over the last 20 years. Since the pioneering study of May et al. (1998), the neuroimaging results have indeed revolutionized the conception of this disease, now considered as a dysfunction of the central nervous system. Clinical, neuroendocrinological, and neuroimaging studies strongly suggested the involvement of the hypothalamus as the generator of cluster headache attacks. However, the latency of the improvement and the inefficacy of the hypothalamic deep brain stimulation (DBS) in the acute phase suggested that the hypothalamus might play a modulating role, pointing to the presence of some dysfunctional brain networks, normalized or modulated by the DBS. Despite the great importance of possible dysfunctional hypothalamic networks in cluster headache pathophysiology, only quite recently the scientific community has begun to explore the functional connectivity of these circuits using resting-state functional magnetic resonance imaging. This is a neuroimaging technique extensively employed to investigate the functional connectivity among separated regions of the brain at rest in the low-frequency domain (< 0.1 Hz). Here, we present a review of the few resting-state functional magnetic resonance imaging studies investigating the hypothalamic network contributing to a deeper comprehension of this neurological disorder. These studies seem to demonstrate that both the hypothalamus and the diencephalic-mesencephalic junction regions might play an important role in the pathophysiology of CH. However, future studies are needed to confirm the results and to clarify if the observed dysfunctional networks are a specific neural fingerprint of the CH pathophysiology or an effect of the severe acute pain. It will be also crucial to clarify the neural pathways of the chronicization of this disorder.
Collapse
Affiliation(s)
- Stefania Ferraro
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy.
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy
| | - Greta Demichelis
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy
| | - Chiara Pinardi
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy
| | - Luca Brivio
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy
| | - Luca Giani
- Department of Neurology and Headache Centre, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Alberto Proietti
- Department of Neurology and Headache Centre, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Massimo Leone
- Department of Neurology and Headache Centre, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Luisa Chiapparini
- Department of Neuroradiology, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', 20133, Milan, Italy
| |
Collapse
|
11
|
Abstract
OBJECTIVE The goal of this narrative review is to provide an overview of migraine pathophysiology, with an emphasis on the role of calcitonin gene-related peptide (CGRP) within the context of the trigeminovascular system. BACKGROUND Migraine is a prevalent and disabling neurological disease that is characterized in part by intense, throbbing, and unilateral headaches. Despite recent advances in understanding its pathophysiology, migraine still represents an unmet medical need, as it is often underrecognized and undertreated. Although CGRP has been known to play a pivotal role in migraine for the last 2 decades, this has now received more interest spurred by the early clinical successes of drugs that block CGRP signaling in the trigeminovascular system. DESIGN This narrative review presents an update on the role of CGRP within the trigeminovascular system. PubMed searches were used to find recent (ie, 2016 to November 2018) published articles presenting new study results. Review articles are also included not as primary references but to bring these to the attention of the reader. Original research is referenced in describing the core of the narrative, and review articles are used to support ancillary points. RESULTS The trigeminal ganglion neurons provide the connection between the periphery, stemming from the interface between the primary afferent fibers of the trigeminal ganglion and the meningeal vasculature and the central terminals in the trigeminal nucleus caudalis. The neuropeptide CGRP is abundant in trigeminal ganglion neurons, and is released from the peripheral nerve and central nerve terminals as well as being secreted within the trigeminal ganglion. Release of CGRP from the peripheral terminals initiates a cascade of events that include increased synthesis of nitric oxide and sensitization of the trigeminal nerves. Secreted CGRP in the trigeminal ganglion interacts with adjacent neurons and satellite glial cells to perpetuate peripheral sensitization, and can drive central sensitization of the second-order neurons. A shift in central sensitization from activity-dependent to activity-independent central sensitization may indicate a mechanism driving the progression of episodic migraine to chronic migraine. The pathophysiology of cluster headache is much more obscure than that of migraine, but emerging evidence suggests that it may also involve hypersensitivity of the trigeminovascular system. Ongoing clinical studies with therapies targeted at CGRP will provide additional, valuable insights into the pathophysiology of this disorder. CONCLUSIONS CGRP plays an essential role in the pathophysiology of migraine. Treatments that interfere with the functioning of CGRP in the peripheral trigeminal system are effective against migraine. Blocking sensitization of the trigeminal nerve by attenuating CGRP activity in the periphery may be sufficient to block a migraine attack. Additionally, the potential exists that this therapeutic strategy may also alleviate cluster headache as well.
Collapse
Affiliation(s)
- Smriti Iyengar
- Eli Lilly and CompanyIndianapolisINUSA
- Present address:
Indiana University School of MedicineIndianapolisINUSA
| | | | | | | |
Collapse
|
12
|
Ponté C, Giron A, Crequy M, Lapeyre-Mestre M, Fabre N, Salles J. Cluster Headache in Subjects With Substance Use Disorder: A Case Series and a Review of the Literature. Headache 2019; 59:576-589. [PMID: 30957220 DOI: 10.1111/head.13516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To describe a case series of 7 patients presenting cluster headache (CH) criteria and a substance use disorder, reported to a French Addictovigilance center. Then, to assess clinical, pharmacological, and neurobiological linkages between substance use and CH onset. BACKGROUND CH patients are presenting a higher prevalence of comorbidities, among which the use of psychoactive substances, licit or illicit, have been explored by a few authors. Recently, 3 cases of CH in patients seen in the hospital-based addiction care center have been reported to the Toulouse addictovigilance center. METHODS Other cases have been identified in the same tertiary hospital after a collaborative investigation done with the departments of neurology and psychiatry and included in the case series. A narrative review was performed to assess the potential of psychoactive substance consumption to induce or facilitate CH. RESULTS From 2016 to 2018, 6 males and 1 female aged between 26 and 54 years old, presenting CH criteria and a substance use disorder, were included in our case series. Among substances used, there are: (1) daily use of tobacco and alcohol in 5/7 subjects; (2) daily or almost daily use of cocaine in 5/7 subjects; (3) regular use of cannabis before attacks beginning in 4/7 subjects; and (4) opioids, as a substitutive medication or abused, in 5/7 subjects. The intranasal route administration is reported by all the subjects and precedes the beginning of attacks for 5/7 subjects. CONCLUSIONS We have found a CH prevalence of 0.9% in our studied population, while it is estimated at 0.1% in the general population. The coexistence of cluster headache and addiction behaviors reflects possible common neurobiological pathways, which would include the hypothalamus. Research could be conducted on the potential of hypothalamic therapeutic targets.
Collapse
Affiliation(s)
- Camille Ponté
- Service de Pharmacologie Médicale et Clinique, Centre d'Evaluation et Information sur la Pharmacodépendance-Addictovigilance, Faculté de Médecine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Aurélie Giron
- Service de Psychiatrie et Psychologie, Université de Toulouse III, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marie Crequy
- Service Universitaire de Psychiatrie et Psychologie Médicale, Centre de Soins d'Accompagnement et de Prévention en Addictologie, Hopital La Grave, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Maryse Lapeyre-Mestre
- Service de Pharmacologie Médicale et Clinique, Centre d'Evaluation et Information sur la Pharmacodépendance-Addictovigilance, INSERM UMR 1027, CIC INSERM 1436, Faculté de Médecine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Nelly Fabre
- Departement de Neurologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Juliette Salles
- Service de Psychiatrie et Psychologie, INSERM UMR 1043, Université de Toulouse III, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
13
|
Abstract
BACKGROUND Cluster headache is the most severe primary headache disorder. A genetic basis has long been suggested by family and twin studies; however, little is understood about the genetic variants that contribute to cluster headache susceptibility. METHODS We conducted a literature search of the MEDLINE database using the PubMed search engine to identify all human genetic studies for cluster headache. In this article we provide a review of those genetic studies, along with an overview of the pathophysiology of cluster headache and a brief review of migraine genetics, which have both been significant drivers of cluster headache candidate gene selection. RESULTS The investigation of cluster headache genetic etiology has been dominated by candidate gene studies. Candidate selection has largely been driven by the pathophysiology, such as the striking rhythmic nature of the attacks, which spurred close examination of the circadian rhythm genes CLOCK and HCRTR2. More recently, unbiased genetic approaches such as genome-wide association studies (GWAS) have yielded new genetic avenues of interest including ADCYAP1R1 and MME. CONCLUSIONS The majority of candidate genes studied for cluster headache suffer from poor reproducibility. Broader genetic interrogation through larger unbiased GWAS, exome, and whole genome studies may provide more robust candidates, and in turn provide a clearer understanding of the causes of cluster headache.
Collapse
Affiliation(s)
| | | | - Nunu Lund
- 2 Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark
| | - Rigmor Jensen
- 2 Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark
| | | |
Collapse
|
14
|
Messina G, Broggi G, Levi V, Franzini A. Deep brain stimulation for trigeminal autonomic cephalalgias. Expert Rev Neurother 2018; 18:421-426. [PMID: 29671647 DOI: 10.1080/14737175.2018.1462702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Introduction: Deep brain stimulation (DBS) of the posterior hypothalamic region (pHyr) has been shown to be efficacious for more than a half of patients suffering from trigeminal autonomic cephalalgias (TACs); nonetheless, controversies about the mechanisms of action and the actual site of stimulation have arisen in recent years.Areas covered: Firstly, a review of the most recent literature on the subject is presented, stressing the critical points that could, in the future, make a difference for optimal management of patients afflicted by these life-threating diseases. Hypothalamic functional anatomy, experimental data and pathophysiological hypotheses are reported.Expert commentary: About 32% of patients who underwent DBS for TACs are pain-free. The determination of the pHyr region seems to be crucial for the generation of pain attack in these pathologies, although other structures are involved in complex mechanisms and circuits that interact with each other. Neurophysiological data, combined with more advanced experimental models, are of primary importance regarding our understanding of what the real target is, and how to overcome the issue of refractory patients.
Collapse
Affiliation(s)
- Giuseppe Messina
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Broggi
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Division of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Franzini
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
15
|
Ferraro S, Nigri A, Bruzzone MG, Brivio L, Proietti Cecchini A, Verri M, Chiapparini L, Leone M. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia 2018. [PMID: 29517304 DOI: 10.1177/0333102418761048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. METHODS Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. RESULTS Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p < 0.005 FDR-corrected vs . control group). No difference between patients and controls was found comparing the contralateral hypothalami. CONCLUSIONS The observed deranged functional connectivity between the posterior ipsilateral hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.
Collapse
Affiliation(s)
- Stefania Ferraro
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anna Nigri
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Maria Grazia Bruzzone
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Luca Brivio
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Alberto Proietti Cecchini
- 2 Headache and Neuroalgology Department, Pain Neuromodulation Unit of Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Mattia Verri
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Luisa Chiapparini
- 1 Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Massimo Leone
- 2 Headache and Neuroalgology Department, Pain Neuromodulation Unit of Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| |
Collapse
|
16
|
Fan Z, Hou L, Wan D, Ao R, Zhao D, Yu S. Genetic association of HCRTR2, ADH4 and CLOCK genes with cluster headache: a Chinese population-based case-control study. J Headache Pain 2018; 19:1. [PMID: 29318394 PMCID: PMC5760492 DOI: 10.1186/s10194-017-0831-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cluster headache (CH), a rare primary headache disorder, is currently thought to be a genetic susceptibility which play a role in CH susceptibility. A large numbers of genetic association studies have confirmed that the HCRTR2 (Hypocretin Receptor 2) SNP rs2653349, and the ADH4 (Alcohol Dehydrogenase 4) SNP rs1126671 and rs1800759 polymorphisms are linked to CH. In addition, the CLOCK (Circadian Locomotor Output Cycles Kaput) gene is becoming a research hotspot for CH due to encoding a transcription factor that serves as a basic driving force for circadian rhythm in humans. The purpose of this study was to evaluate the association between CH and the HCRTR2, ADH4 and CLOCK genes in a Chinese CH case–control sample. Methods We genotyped polymorphisms of nine single nucleotide polymorphisms (SNPs) in the HCRTR2, ADH4 and CLOCK genes to perform an association study on a Chinese Han CH case-control sample (112 patients and 192 controls),using Sequenom MALDI-TOF mass spectrometry iPLEX platform. The frequencies and distributions of genotypes and haplotypes were statistically compared between the case and control groups to identify associations with CH. The effects of SNPs on CH were further investigated by multiple logistic regression. Results The frequency of the HCRTR2 SNP rs3800539 GA genotype was significantly higher in cases than in controls (48.2% vs.37.0%). The GA genotypes was associated with a higher CH risk (OR = 1.483, 95% CI: 0.564-3.387, p = 0.038), however, after Bonferroni correction, the association lost statistical significance. Haplotype analysis of the HCRTR2 SNPs showed that among eight haplotypes, only H1-GTGGGG was linked to a reduced CH risk (44.7% vs. 53.1%, OR = 0.689, 95% CI =0.491~0.966, p = 0.030). No significant association of ADH4, CLOCK SNPs with CH was statistically detected in the present study. Conclusions Association between HCRTR2, ADH4,CLOCK gene polymorphisms and CH was not significant in the present study, however, haplotype analysis indicated H1-GTGGGG was linked to a reduced CH risk. Electronic supplementary material The online version of this article (10.1186/s10194-017-0831-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiliang Fan
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.,The third department of Neurology, Affiliated Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, China
| | - Lei Hou
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Dongjun Wan
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Ran Ao
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Dengfa Zhao
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
17
|
Damage-free peripheral nerve stimulation by 12-ns pulsed electric field. Sci Rep 2017; 7:10453. [PMID: 28874684 PMCID: PMC5585227 DOI: 10.1038/s41598-017-10282-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
Modern technologies enable deep tissue focusing of nanosecond pulsed electric field (nsPEF) for non-invasive nerve and muscle stimulation. However, it is not known if PEF orders of magnitude shorter than the activation time of voltage-gated sodium channels (VGSC) would evoke action potentials (APs). One plausible scenario requires the loss of membrane integrity (electroporation) and resulting depolarization as an intermediate step. We report, for the first time, that the excitation of a peripheral nerve can be accomplished by 12-ns PEF without electroporation. 12-ns stimuli at 4.1-11 kV (3.3-8.8 kV/cm) evoked APs similarly to conventional stimuli (100-250 μs, 1-5 V, 103-515 V/m), except for having higher selectivity for the faster nerve fibers. Nerves sustained repeated tetanic stimulations (50 Hz or 100 Hz for 1 min) alternately by 12-ns PEF and by conventional pulses. Such tetani caused a modest AP decrease, to a similar extent for both types of stimuli. Nerve refractory properties were not affected. The lack of cumulative damages even from tens of thousands of 12-ns stimuli and the similarities with the conventional stimulation prove VGSC activation by nsPEF without nerve membrane damage.
Collapse
|
18
|
Action mechanisms of Onabotulinum toxin-A: hints for selection of eligible patients. Neurol Sci 2017; 38:131-140. [DOI: 10.1007/s10072-017-2884-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Abstract
Headache disorders are common, debilitating, and, in many cases, inadequately managed by existing treatments. Although clinical trials of cannabis for neuropathic pain have shown promising results, there has been limited research on its use, specifically for headache disorders. This review considers historical prescription practices, summarizes the existing reports on the use of cannabis for headache, and examines the preclinical literature exploring the role of exogenous and endogenous cannabinoids to alter headache pathophysiology. Currently, there is not enough evidence from well-designed clinical trials to support the use of cannabis for headache, but there are sufficient anecdotal and preliminary results, as well as plausible neurobiological mechanisms, to warrant properly designed clinical trials. Such trials are needed to determine short- and long-term efficacy for specific headache types, compatibility with existing treatments, optimal administration practices, as well as potential risks.
Collapse
Affiliation(s)
- Bryson C Lochte
- Department of Psychiatry, Center for Medicinal Cannabis Research, University of California, San Diego, La Jolla, California
| | - Alexander Beletsky
- Department of Psychiatry, Center for Medicinal Cannabis Research, University of California, San Diego, La Jolla, California
| | - Nebiyou K Samuel
- Department of Psychiatry, Center for Medicinal Cannabis Research, University of California, San Diego, La Jolla, California
| | - Igor Grant
- Department of Psychiatry, Center for Medicinal Cannabis Research, University of California, San Diego, La Jolla, California
| |
Collapse
|