1
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum. Neurochem Int 2024; 181:105890. [PMID: 39455011 DOI: 10.1016/j.neuint.2024.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Eladia M Peña-Méndez
- Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, 17071, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
2
|
Guzzi G, Della Torre A, Bruni A, Lavano A, Bosco V, Garofalo E, La Torre D, Longhini F. Anatomo-physiological basis and applied techniques of electrical neuromodulation in chronic pain. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:29. [PMID: 38698460 PMCID: PMC11064427 DOI: 10.1186/s44158-024-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged as a promising alternative in chronic pain management. This method entails the precise administration of electrical stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mechanisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric neuromodulation can effectively alleviate pain and improve patients' quality of life. Several modalities of electric neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompassing neurotransmitter involvement, this narrative review offers insights into electrical therapies' mechanisms of action, clinical utility, and future perspectives in chronic pain management.
Collapse
Affiliation(s)
- Giusy Guzzi
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Attilio Della Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Angelo Lavano
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Bosco
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Domenico La Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy.
| |
Collapse
|
3
|
Toledano‐Martos R, Bagó‐Mas A, Deulofeu M, Homs J, Fiol N, Verdú E, Boadas‐Vaello P. Natural polyphenolic coffee extract administration relieves chronic nociplastic pain in a reserpine-induced fibromyalgia-like female mouse model. Brain Behav 2024; 14:e3386. [PMID: 38376034 PMCID: PMC10794125 DOI: 10.1002/brb3.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Nociplastic pain involves reflexive and nonreflexive pain responses and it is a core symptom of fibromyalgia (FM). The increasing prevalence of this health condition and the low rates of patients' quality of life, combined with the lack of suitable pharmacologic treatments, evidence the demand to research new alternatives. Polyphenols may be potential therapeutic candidates as they have been reported to exert pathological pain modulation in preclinical models. In that context, this work was aimed to study the antinociceptive effects of a polyphenolic extract obtained from decaffeinated ground roasted coffee, in the RIM6 FM-like mouse model. METHODS To this end, RIM6 adult ICR-CD1 female mice were administered daily once a week with either 10 or 15 mg/kg of extract, and reflexive pain responses were evaluated for up to 3 weeks. At the end, the depressive-like behavior was assessed as a nonreflexive pain response, and spinal cord and serum samples were collected for immunohistochemical and toxicological analyses. RESULTS These findings showed that the repeated administration of the coffee polyphenolic extract (CE) modulated reflexive pain responses, depressive-like behavior, and spinal cord gliosis in a dose-dependent manner, without signs of systemic toxicity. CONCLUSION Thus, the CE may be a potential pharmacological treatment suitable to relieve nociplastic pain responses characteristic of FM.
Collapse
Affiliation(s)
- Rubén Toledano‐Martos
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Anna Bagó‐Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
- University School of Health and Sport (EUSES), University of GironaGironaCataloniaSpain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic SchoolUniversity of GironaGironaCataloniaSpain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Pere Boadas‐Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| |
Collapse
|
4
|
Yang S, Zhong S, Fan Y, Zhu Y, Xu N, Liao Y, Fan G, Liao X, He S. Research hotspots and trends on spinal cord stimulation for pain treatment: a two-decade bibliometric analysis. Front Neurosci 2023; 17:1158712. [PMID: 37304039 PMCID: PMC10248081 DOI: 10.3389/fnins.2023.1158712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Background Chronic pain poses a significant social burden. Spinal cord stimulation (SCS) is considered to be the most promising treatment for refractory pain. The aim of this study was to summarize the current research hotspots on SCS for pain treatment during the past two decades and to predict the future research trends by bibliometric analysis. Methods The literature over the last two decades (2002-2022) which was related to SCS in pain treatment was obtained from the Web of Science Core Collection. Bibliometric analyses were conducted based on the following aspects: (1) Annual publication and citation trends; (2) Annual publication changes of different publication types; (3) Publications and citations/co-citations of different country/institution/journal/author; (4) Citations/co-citation and citation burst analysis of different literature; and (5) Co-occurrence, cluster, thematic map, trend topics, and citation burst analysis of different keywords. (6) Comparison between the United States and Europe. All analyses were performed on CiteSpace, VOSviewer, and R bibliometrix package. Results A total of 1,392 articles were included in this study, with an increasing number of publications and citations year by year. The most highly published type of literature was clinical trial. United States was the country with the most publications and citations; Johns Hopkins University was the institution with the most publications; NEUROMODULATION published the most papers; the most published author was Linderoth B; and the most cited paper was published in the PAIN by Kumar K in 2007. The most frequently occurring keywords were "spinal cord stimulation," "neuropathic pain," and "chronic pain," etc. Conclusion The positive effect of SCS on pain treatment has continued to arouse the enthusiasm of researchers in this field. Future research should focus on the development of new technologies, innovative applications, and clinical trials for SCS. This study might facilitate researchers to comprehensively understand the overall perspective, research hotspots, and future development trends in this field, as well as seek collaboration with other researchers.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sen Zhong
- Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunshan Fan
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanjie Zhu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ningze Xu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Liao
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, China
- Department of Spine Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, China
| | - Shisheng He
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang X, Yu J, Han CF, He JD, Yang WQ, Wang Q, Chen JP. The Effect of CT-Guided Pulsed Radiofrequency Combined with Ozone Injection on Zoster-Associated Pain: A Retrospective Study. J Pain Res 2023; 16:1321-1332. [PMID: 37101519 PMCID: PMC10124561 DOI: 10.2147/jpr.s398578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
Purpose Globally, the incidence of herpes zoster (HZ) is increasing, and the resulting zoster-associated pain (ZAP) severely affects the quality of life of patients. Therefore, active treatment of ZAP and prevention of postherpetic neuralgia (PHN) are very important for patients in the early stage of the disease. This retrospective observational study aimed to evaluate the effect of CT-guided pulsed radiofrequency (PRF) combined with ozone injection on zoster-associated pain. Patients and Methods From 2018 to 2020, 84 patients with AHN (n=28), SHN (n=32), or PHN (n=24) underwent PRF combined with ozone injection treatment after pharmacologic and conservative therapies failed. The visual analogue scale (VAS), the Pittsburgh Sleep Quality Index (PSQI), and pregabalin consumption were recorded at baseline, post-PRF, and at 1, 3, 6, and 12 months after treatment. The number of remediations performed and adverse reactions were recorded, and treatment inefficiency was calculated using a VAS score greater than 3 as the criterion. Results The pooled results demonstrated statistically significant decreases in VAS scores, PSQI scores and consumption of pregabalin post-PRF and at 1, 3, 6, and 12 months follow-up (P<0.05). Compared with the PHN group, both the AHN and SHN groups showed clinical and statistical improvement in VAS scores and PSQI scores and in consumption of pregabalin (P< 0.05). At 1 year after the operation, the PHN group had a significantly greater number of remediation events and greater treatment inefficiency than the other two groups. No serious adverse events were observed during the procedure or during the follow-up period. Conclusion CT-guided PRF combined with ozone injection is safe and effective for individuals with ZAP, and its short-term and long-term effects are significant. In a sense, early PRF combined with ozone injection is more effective.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pain Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chong-Fang Han
- Department of Anesthesiology Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Chong-Fang Han, Department of Anesthesiology Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng street, Xiaodian District Taiyuan, Shanxi, 030032, People’s Republic of China, Email ;
| | - Jian-Dong He
- Department of Anesthesiology Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wen-Qu Yang
- Department of Anesthesiology Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qi Wang
- Department of Pain Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jian-Ping Chen
- Department of Pain Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
6
|
Soler-Martínez R, Deulofeu M, Bagó-Mas A, Dubový P, Verdú E, Fiol N, Boadas-Vaello P. Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice. BIOLOGY 2022; 11:1617. [PMID: 36358318 PMCID: PMC9687351 DOI: 10.3390/biology11111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Collapse
Affiliation(s)
- Roger Soler-Martínez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|