1
|
Javaid N, Patra MC, Cho DE, Batool M, Kim Y, Choi GM, Kim MS, Hahm DH, Choi S. An orally active, small-molecule TNF inhibitor that disrupts the homotrimerization interface improves inflammatory arthritis in mice. Sci Signal 2022; 15:eabi8713. [DOI: 10.1126/scisignal.abi8713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive signaling by the proinflammatory cytokine TNF is involved in several autoimmune diseases, including rheumatoid arthritis (RA). However, unlike the approved biologics currently used to treat this and other conditions, commercially available small-molecule inhibitors of TNF trimerization are cytotoxic or exhibit low potency. Here, we report a TNF-inhibitory molecule (TIM) that reduced TNF signaling in vitro and was an effective treatment in a mouse model of RA. The initial lead compound, TIM1, attenuated TNF-induced apoptosis of human and mouse cells by delaying the induction of proinflammatory NF-κB and MAPK signaling and caspase 3– and caspase 8–dependent apoptosis. TIM1 inhibited the secretion of the proinflammatory cytokines IL-6 and IL-8 by disrupting TNF homotrimerization, thereby preventing its association with the TNF receptor. In a mouse model of collagen-induced polyarthritis, the more potent TIM1 analog TIM1c was orally bioavailable and reduced paw swelling, histological indicators of knee joint pathology, inflammatory infiltration of the joint, and the overall arthritis index. Orally delivered TIM1c showed immunological effects similar to those elicited by intraperitoneal injection of the FDA-approved TNF receptor decoy etanercept. Thus, TIM1c is a promising lead compound for the development of small-molecule therapies for the treatment of RA and other TNF-dependent systemic inflammation disorders.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gwang Muk Choi
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
2
|
Bavbek S. TNF-Alfa Inhibitörleri Ile Tedavi Seyrinde Gelişen Alerjik Reaksiyonlar. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.648098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol 2019; 64:61-82. [PMID: 31054927 DOI: 10.1016/j.semcancer.2019.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Immune cells of the myeloid and lymphoid lineages express Toll-like receptors (TLRs) to recognize pathogenic components or cellular debris and activate the immune system through the secretion of cytokines. Cytokines are signaling molecules that are structurally and functionally distinct from one another, although their secretion profiles and signaling cascades often overlap. This situation gives rise to pleiotropic cell-to-cell communication pathways essential for protection from infections as well as cancers. Nonetheless, deregulated signaling can have detrimental effects on the host, in the form of inflammatory or autoimmune diseases. Because cytokines are associated with numerous autoimmune and cancerous conditions, therapeutic strategies to modulate these molecules or their biological responses have been immensely beneficial over the years. There are still challenges in the regulation of cytokine function in patients, even in those who take approved biological therapeutics. In this review, our purpose is to discuss the differential expression patterns of TLR-regulated cytokines and their cell type specificity that is associated with cancers and immune-system-related diseases. In addition, we highlight key structural features and molecular recognition of cytokines by receptors; these data have facilitated the development and approval of several biologics for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Munera-Campos M, Ballesca F, Carrascosa JM. Paradoxical Reactions to Biologic Therapy in Psoriasis: A Review of the Literature. ACTAS DERMO-SIFILIOGRAFICAS 2018; 109:791-800. [PMID: 29903464 DOI: 10.1016/j.ad.2018.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023] Open
Abstract
Biologic drugs, which are molecules designed to act on specific immune system targets, have been shown to be very effective in treating various dermatological, rheumatological, and systemic diseases. As a group, they have an acceptable safety profile, but their use has been associated with the onset of both systemic and organ-specific inflammatory conditions. True paradoxical reactions are immune-mediated disorders that would usually respond to the biologic agent that causes them. There is still debate about whether certain other adverse reactions can be said to be paradoxical. The hypotheses proposed to explain the pathogenesis of such reactions include an imbalance in cytokine production, with an overproduction of IFN-α and altered lymphocyte recruitment and migration (mediated in part by CXCR3), and the production of autoantibodies. Some biologic therapies favor granulomatous reactions. While most of the paradoxical reactions reported have been associated with the use of TNF-α inhibitors, cases associated with more recently introduced biologic therapies -such as ustekinumab, secukinumab, and ixekizumab- are increasingly common. The study of paradoxical adverse events not only favors better management of these reactions in patients receiving biologic therapy, but also improves our knowledge of the pathogenesis of chronic inflammatory diseases and helps to identify potential therapeutic targets.
Collapse
Affiliation(s)
- M Munera-Campos
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, España.
| | - F Ballesca
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, España
| | - J M Carrascosa
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, España
| |
Collapse
|
6
|
Wendling D, Prati C. Targeted synthetic disease-modifying antirheumatic drugs in spondyloarthritis. Immunotherapy 2017; 9:221-223. [DOI: 10.2217/imt-2017-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Wendling
- EA 4266, Université de Bourgogne Franche-Comté, Besançon; &, CHRU de Besançon (University Teaching Hospital), Boulevard Fleming, F-25030, Besançon, France
| | - Clément Prati
- EA 4267, FHU INCREASE, Université de Bourgogne Franche-Comté, Besançon; &, Department of Rheumatology, CHRU de Besançon (University Teaching Hospital), Boulevard Fleming, F-25030, Besançon, France
| |
Collapse
|