1
|
Kontsioti E, Maskell S, Anderson I, Pirmohamed M. Identifying Drug-Drug Interactions in Spontaneous Reports Utilizing Signal Detection and Biological Plausibility Aspects. Clin Pharmacol Ther 2024; 116:165-176. [PMID: 38590106 DOI: 10.1002/cpt.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Translational approaches can benefit post-marketing drug safety surveillance through the growing availability of systems pharmacology data. Here, we propose a novel Bayesian framework for identifying drug-drug interaction (DDI) signals and differentiating between individual drug and drug combination signals. This framework is coupled with a systems pharmacology approach for automated biological plausibility assessment. Integrating statistical and biological evidence, our method achieves a 16.5% improvement (AUC: from 0.620 to 0.722) with drug-target-adverse event associations, 16.0% (AUC: from 0.580 to 0.673) with drug enzyme, and 15.0% (AUC: from 0.568 to 0.653) with drug transporter information. Applying this approach to detect potential DDI signals of QT prolongation and rhabdomyolysis within the FDA Adverse Event Reporting System (FAERS), we emphasize the significance of systems pharmacology in enhancing statistical signal detection in pharmacovigilance. Our study showcases the promise of data-driven biological plausibility assessment in the context of challenging post-marketing DDI surveillance.
Collapse
Affiliation(s)
- Elpida Kontsioti
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Simon Maskell
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Isobel Anderson
- Patient Safety Operations, Technology & Analytics, Global Patient Safety, AstraZeneca, Macclesfield, UK
| | - Munir Pirmohamed
- The Wolfson Center for Personalized Medicine, Center for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Wang W, Battini V, Carnovale C, Noordam R, van Dijk KW, Kragholm KH, van Heemst D, Soeorg H, Sessa M. A novel approach for pharmacological substantiation of safety signals using plasma concentrations of medication and administrative/healthcare databases: a case study using Danish registries for an FDA warning on lamotrigine. Pharmacol Res 2023:106811. [PMID: 37268178 DOI: 10.1016/j.phrs.2023.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
PHARMACOM-EPI is a novel framework to predict plasma concentrations of drugs at the time of occurrence of clinical outcomes. In early 2021, the U.S. Food and Drug Administration (FDA) issued a warning on the antiseizure drug lamotrigine claiming that it has the potential to increase the risk of arrhythmias and related sudden cardiac death due to a pharmacological sodium channel-blocking effect. We hypothesized that the risk of arrhythmias and related death is due to toxicity. We used the PHARMACOM-EPI framework to investigate the relationship between lamotrigine's plasma concentrations and the risk of death in older patients using real-world data. Danish nationwide administrative and healthcare registers were used as data sources and individuals aged 65 years or older during the period 1996 - 2018 were included in the study. According to the PHARMACOM-EPI framework, plasma concentrations of lamotrigine were predicted at the time of death and patients were categorized into non-toxic and toxic groups based on the therapeutic range of lamotrigine (3-15mg/L). Over 1 year of treatment, the incidence rate ratio (IRR) of all-cause mortality was calculated between the propensities score matched toxic and non-toxic groups. In total, 7286 individuals were diagnosed with epilepsy and were exposed to lamotrigine, 432 of which had at least one plasma concentration measurement The pharmacometric model by Chavez et al. was used to predict lamotrigine's plasma concentrations considering the lowest absolute percentage error among identified models (14.25%, 95% CI: 11.68-16.23). The majority of lamotrigine associated deaths were cardiovascular-related and occurred among individuals with plasma concentrations in the toxic range. The IRR of mortality between the toxic group and non-toxic group was 3.37 [95% CI: 1.44-8.32] and the cumulative incidence of all-cause mortality exponentially increased in the toxic range. Application of our novel framework PHARMACOM-EPI provided strong evidence to support our hypothesis that the increased risk of all-cause and cardiovascular death was associated with a toxic plasma concentration level of lamotrigine among older lamotrigine users.
Collapse
Affiliation(s)
- Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Vera Battini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy; Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics; Leiden University Medical Center, Leiden, Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Leiden Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics; Leiden University Medical Center, Leiden, Netherlands
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Estonia.
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Song H, Pei X, Liu Z, Shen C, Sun J, Liu Y, Zhou L, Sun F, Xiao X. Pharmacovigilance in China: Evolution and future challenges. Br J Clin Pharmacol 2023; 89:510-522. [PMID: 35165914 PMCID: PMC10078654 DOI: 10.1111/bcp.15277] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 01/18/2023] Open
Abstract
Drug-related adverse reactions are among the main reasons for harm to patients under care worldwide and even their deaths. The pharmacovigilance system has been proven to be an effective method of avoiding or alleviating such adverse events. In 2019, after two decades of implementation of the drug-related adverse reaction reporting system, China formally implemented a pharmacovigilance system with the Pharmacovigilance Quality Management Standards and a series of supporting technical documents created to improve the safety of medication given to patients. China's pharmacovigilance system has faced many problems and challenges during its implementation. This spontaneous reporting system is the main source of data for China's medication vigilance activities, but it has not provided sufficiently powerful evidence for regulatory decision-making. In conformity with the health-centred drug regulatory concept, the Chinese government has accelerated the speed of examination and approval of urgently needed clinical drugs and orphan drugs along with the requirement to improve the safety supervision of these drugs after their listing. China's marketing authorization holders (MAHs) must strengthen their pharmacovigilance capabilities as the primary responsible departments for drug safety. Chinese medical schools generally lack professional courses on pharmacovigilance. The regulatory authorities have recognized such problems and have made efforts to improve the professional capacity of pharmacovigilance personnel and to strengthen cooperation with stakeholders through the implementation of an action plan of medication surveillance and the establishment of a patient-based adverse events reporting system and active surveillance systems, which will help China bridge the gap to bring its pharmacovigilance practice up to standards.
Collapse
Affiliation(s)
- Haibo Song
- National Center for ADR Monitoring, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Xiaojing Pei
- Center for Drug Evaluation, NMPA, Beijing, China
| | - Zuoxiang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chuanyong Shen
- National Center for ADR Monitoring, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Jun Sun
- Center for Evaluation, Jiangsu Medical Products Administration, Nanjing, Jiangsu, China
| | - Yuqin Liu
- Gansu Center for Drug and Medical Devices Adverse Reaction Monitoring, Lanzhou, Gansu, China
| | - Lingyun Zhou
- Lingyun Zhou, Sanofi (China) Investment Co., Ltd, Shanghai Branch, Shanghai, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Soeorg H, Sverrisdóttir E, Andersen M, Lund TM, Sessa M. The PHARMACOM-EPI Framework for Integrating Pharmacometric Modelling Into Pharmacoepidemiological Research Using Real-World Data: Application to Assess Death Associated With Valproate. Clin Pharmacol Ther 2021; 111:840-856. [PMID: 34860420 DOI: 10.1002/cpt.2502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
In pharmacoepidemiology, it is usually expected that the observed association should be directly or indirectly related to the pharmacological effects of the drug/s under investigation. Pharmacological effects are, in turn, strongly connected to the pharmacokinetic and pharmacodynamic properties of a drug, which can be characterized and investigated using pharmacometric models. Recently, the use of pharmacometrics has been proposed to provide pharmacological substantiation of pharmacoepidemiological findings derived from real-world data. However, validated frameworks suggesting how to combine these two disciplines for the aforementioned purpose are missing. Therefore, we propose PHARMACOM-EPI, a framework that provides a structured approach on how to identify, characterize, and apply pharmacometric models with practical details on how to choose software, format dataset, handle missing covariates/dosing data, how to perform the external evaluation of pharmacometric models in real-world data, and how to provide pharmacological substantiation of pharmacoepidemiological findings. PHARMACOM-EPI was tested in a proof-of-concept study to pharmacologically substantiate death associated with valproate use in the Danish population aged ≥ 65 years. Pharmacological substantiation of death during a follow-up period of 1 year showed that in all individuals who died (n = 169) individual predictions were within the subtherapeutic range compared with 52.8% of those who did not die (n = 1,084). Of individuals who died, 66.3% (n = 112) had a cause of death possibly related to valproate and 33.7% (n = 57) with well-defined cause of death unlikely related to valproate. This proof-of-concept study showed that PHARMACOM-EPI was able to provide pharmacological substantiation for death associated with valproate use in the study population.
Collapse
Affiliation(s)
- Hiie Soeorg
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, University of Copenhagen, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Pharmacometrics Research Group, University of Copenhagen, Copenhagen, Denmark
| | - Eva Sverrisdóttir
- Department of Drug Design and Pharmacology, Pharmacometrics Research Group, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, Pharmacometrics Research Group, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|