1
|
Tel-Çayan G, Çiftçi BH, Taş-Küçükaydın M, Temel Y, Çayan F, Küçükaydın S, Duru ME. Citrus Honeys from Three Different Regions of Turkey: HPLC-DAD Profiling and in Vitro Enzyme Inhibition, Antioxidant, Anti-Inflammatory and Antimicrobial Properties with Chemometric Study. Chem Biodivers 2023; 20:e202300990. [PMID: 37548632 DOI: 10.1002/cbdv.202300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
The objectives of the present study are to compare the phenolic profiles and biological activities of 15 citrus honey samples from three different locations in Turkey using a chemometric approach. The HPLC-DAD analysis was used to determine phenolic profiles. Nineteen phenolic compounds were identified. Gallic acid (107.14-717.04 μg/g) was recorded as the predominant compound. AF (Antalya-Finike) had the highest antioxidant activity in ABTS⋅+ (IC50 : 18.01±0.69 mg/mL), metal chelating (IC50 : 6.20±0.19 mg/mL) and CUPRAC (A0.50 : 12.05±0.68 mg/mL) assays, while it revealed the best anti-inflammatory activity against COX-2 (17.28±0.22 %) and COX-1 (43.28±0.91 %). AM (Antalya-Manavgat) was the most active in β-carotene-linoleic acid (IC50 : 10.05±0.19 mg/mL), anti-urease (38.90±0.69 %), anti-quorum sensing and antimicrobial activities. AKO1 (Adana-Kozan-1) in DPPH⋅ (IC50 : 34.25±0.81 mg/mL) assay, AKU1 (Antalya-Kumluca-1) in tyrosinase inhibition activity (37.73±0.38 %) assay, AKU2 (Antalya-Kumluca-2) in AChE (10.55±0.63 %) and BChE (9.18±0.45 %) inhibition activity assays showed the best activity. Chemometric tools were applied to the phenolic compositions and biological properties. PCA and HCA ensured that 15 citrus honey samples were grouped into 3 clusters. The results showed that myricetin, kaempferol, vanillin, protocatechuic acid, rosmarinic acid, rutin, vanillic acid, gallic acid, catechin and p-hydroxyphenyl acetic acid are phenolic compounds that can be used in the classification of citrus honeys.
Collapse
Affiliation(s)
- Gülsen Tel-Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Begüm Hazar Çiftçi
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Meltem Taş-Küçükaydın
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Yeşim Temel
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Fatih Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| | - Selçuk Küçükaydın
- Department of Medical Services and Techniques, Köyceğiz Vocational School of Health Services, Muğla Sıtkı Koçman University, 48000, Köyceğiz/Muğla, Turkey
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey
| |
Collapse
|
2
|
Al-Rooqi MM, Mughal EU, Raja QA, Hussein EM, Naeem N, Sadiq A, Asghar BH, Moussa Z, Ahmed SA. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Adv 2023; 13:3210-3233. [PMID: 36756398 PMCID: PMC9869662 DOI: 10.1039/d2ra08284e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Infections caused by bacteria are a significant issue on a global scale, and imperative action is required to discover novel or improved therapeutic agents. Flavonoids are a class of plant-derived compounds that have a variety of potentially useful bioactivities. These activities include immediate antimicrobial properties, synergistic effect with antimicrobials, ferocious repression of pathogenicity, anti-urease activity etc. This review summarizes current studies concerning anti-urease actions of flavonoids as well as structural-activity correlation investigations of the flavonoid core structure. It is possible that if researchers investigate the many structural changes that may be made in flavonoid rings, they'll be able to build up novel compounds that have powerful and effective anti-urease properties.
Collapse
Affiliation(s)
- Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | | | - Essam M Hussein
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Government College Women University Sialkot-51300 Pakistan
| | - Basim H Asghar
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551, Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
3
|
Szczepański J, Tuszewska H, Trotsko N. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123750. [PMID: 35744873 PMCID: PMC9231410 DOI: 10.3390/molecules27123750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including anticancer properties. This review aims to analyze the anticancer features of the rhodanines described over the last decade in the scientific literature. The structure–activity relationship of rhodanine derivatives, as well as some of the molecular targets, were discussed. The information contained in this review could be of benefit to the design of new, effective small molecules with anticancer potential among rhodanine derivatives or their related heterocycles.
Collapse
|
4
|
Polat IH, Tarrado-Castellarnau M, Benito A, Hernandez-Carro C, Centelles J, Marin S, Cascante M. Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10091349. [PMID: 34572981 PMCID: PMC8472416 DOI: 10.3390/antiox10091349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Nucleotide pools need to be constantly replenished in cancer cells to support cell proliferation. The synthesis of nucleotides requires glutamine and 5-phosphoribosyl-1-pyrophosphate produced from ribose-5-phosphate via the oxidative branch of the pentose phosphate pathway (ox-PPP). Both PPP and glutamine also play a key role in maintaining the redox status of cancer cells. Enhanced glutamine metabolism and increased glucose 6-phosphate dehydrogenase (G6PD) expression have been related to a malignant phenotype in tumors. However, the association between G6PD overexpression and glutamine consumption in cancer cell proliferation is still incompletely understood. In this study, we demonstrated that both inhibition of G6PD and glutamine deprivation decrease the proliferation of colon cancer cells and induce cell cycle arrest and apoptosis. Moreover, we unveiled that glutamine deprivation induce an increase of G6PD expression that is mediated through the activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2). This crosstalk between G6PD and glutamine points out the potential of combined therapies targeting oxidative PPP enzymes and glutamine catabolism to combat colon cancer.
Collapse
Affiliation(s)
- Ibrahim H. Polat
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, CEDEX, 38700 La Tronche, France
| | - Míriam Tarrado-Castellarnau
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Adrian Benito
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Claudia Hernandez-Carro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Josep Centelles
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.)
| |
Collapse
|
5
|
Inhibition effect of rhodanines containing benzene moieties on pentose phosphate pathway enzymes and molecular docking. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Thakor P, Subramanian RB, Thakkar SS, Ray A, Thakkar VR. Phytol induces ROS mediated apoptosis by induction of caspase 9 and 3 through activation of TRAIL, FAS and TNF receptors and inhibits tumor progression factor Glucose 6 phosphate dehydrogenase in lung carcinoma cell line (A549). Biomed Pharmacother 2017; 92:491-500. [PMID: 28575806 DOI: 10.1016/j.biopha.2017.05.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/11/2023] Open
Abstract
A number of drugs as well as lead molecules are isolated from natural sources. Phytol is one of such lead molecule belongs to terpenes group distributed widely in medicinal plants. In the present work, we investigated the cytotoxic behavior of phytol on human lung carcinoma cells (A549). Phytol was found to cause characteristic apoptotic morphological changes and generation of ROS in A549 cells. The mechanism of phytol involved the activation of TRAIL, FAS and TNF-α receptors along with caspase 9 and 3. In silico molecular docking studies revealed that phytol has a good binding affinity with glucose-6-phosphate dehydrogenase (G6PD), which is known to promote tumor proliferation. The ability of phytol to become potential drug candidate has been revealed from the pharmacokinetic study performed in the present study.
Collapse
Affiliation(s)
- Parth Thakor
- P. G. Department of Biosciences, Sardar Patel Maidan, Bakrol-Vadtal Road, Satellite Campus, Bakrol, Sardar Patel University, Vallabhvidyanagar, India.
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Bakrol-Vadtal Road, Satellite Campus, Bakrol, Sardar Patel University, Vallabhvidyanagar, India
| | - Sampark S Thakkar
- Department of Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Arabinda Ray
- Department of Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Bakrol-Vadtal Road, Satellite Campus, Bakrol, Sardar Patel University, Vallabhvidyanagar, India.
| |
Collapse
|