1
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Kuznetsov YV, Tserfas MO, Scherbakov AM, Andreeva OE, Salnikova DI, Bozhenko EI, Zavarzin IV, Levina IS. Synthesis of 13β- and 13α-epimers of 3-hydroxy-17-hydroxymethylestra-1,3,5(10)-triene and considerations on their hormonal and antiproliferative potency. Steroids 2024; 212:109527. [PMID: 39486666 DOI: 10.1016/j.steroids.2024.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Starting from 3-methoxyestra-1,3,5(10),16-tetraene-17-carbaldehydes of natural (13β) and epimeric (13α) series, a series of isomeric 3-hydroxy-17-hydroxymethylestra-1,3,5(10)-trienes, including those containing 16α,17α-annulated cyclopropane and cyclohexane ring D', were prepared using the Corey-Chaykovsky and Diels-Alder reactions followed by reduction-demethylation with diisobutylaluminum hydride and hydrogenation. Target compounds showed antiproliferative effects on MCF-7 breast cancer cells to varying degrees superior to that on MCF-10A cells, in low micromolar concentrations. The ERα-mediated luciferase reporter gene assay demonstrated that obtained steroids without an additional carbocycle or with a cyclopropane 16α,17α-annulated carbocycle are effective ERα activators. In this test, steroids of the natural configuration showed high activity at both 10 nM and 100 nM concentrations, whereas 13α-steroids showed a strong dose-dependent effect, surpassing their natural counterparts at a concentration of 100 nM. The 13β-steroid bearing additional 16α,17α-cyclohexane ring had low activity in the test. A simple docking approach using AutoDock Vina was used as a test for a preliminary assessment of the estrogenicity of the compounds. The scope of its applicability and limitations were shown using examples of synthesized molecules.
Collapse
Affiliation(s)
- Yu V Kuznetsov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| | - M O Tserfas
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - A M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - O E Andreeva
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - D I Salnikova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia; N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - E I Bozhenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - I V Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - I S Levina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
3
|
Expression of Key Steroidogenic Enzymes in Human Placenta and Associated Adverse Pregnancy Outcomes. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Kulmány ÁE, Herman BE, Zupkó I, Sinreih M, Rižner TL, Savić M, Oklješa A, Nikolić A, Nagy V, Ocsovszki I, Szécsi M, Jovanović-Šanta S. Heterocyclic androstane and estrane d-ring modified steroids: Microwave-assisted synthesis, steroid-converting enzyme inhibition, apoptosis induction, and effects on genes encoding estrogen inactivating enzymes. J Steroid Biochem Mol Biol 2021; 214:105997. [PMID: 34509617 DOI: 10.1016/j.jsbmb.2021.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
d-ring-fused and d-homo lactone compounds in estratriene and androstane series were synthesized using microwave-assisted reaction conditions. Microwave-irradiated synthesis methods were convenient and effective, and provided high yields with short reaction times. Their inhibition of C17,20-lyase and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities were studied in in vitro enzyme assays. d-ring-fused triazolyl estrone analog 24 showed potent inhibition of NADH-complexed 17β-HSD1, with a binding affinity similar to that of the substrate estrone; its inhibition against NADPH-complexed 17β-HSD1 was markedly weaker. Compound 24 also significantly and selectively reduced proliferation of cancer cell lines of gynecological origin. This estrane triazole changed the cell cycle and induced apoptosis of HeLa, SiHa, and MDA-MB-231 cancer cells, measured by both increased subG1 fraction of cells and activation of caspase-independent signaling pathways. A third mode of anti-estrogenic action of 24 saw increased mRNA expression of the SULT1E1 gene in HeLa cells; in contrast, its 3-benzyloxy analog 23 increased mRNA expression of the HSD17B2 gene, thus showing pronounced pro-drug anti-estrogenic activity. Estradiol-derived d-ring triazole compound 24 thus acts at the enzyme, gene expression and cellular levels to decrease the production of active estrogen hormones, demonstrating its pharmacological potential.
Collapse
Affiliation(s)
- Ágnes Erika Kulmány
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | | | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Masa Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandar Oklješa
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Andrea Nikolić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Mihály Szécsi
- Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
5
|
Ilovaisky AI, Merkulova VM, Chernoburova EI, Shchetinina MA, Salnikova DI, Scherbakov AM, Zavarzin IV, Terent'ev AO. Secosteroidal hydrazides: Promising scaffolds for anti-breast cancer agents. J Steroid Biochem Mol Biol 2021; 214:106000. [PMID: 34547379 DOI: 10.1016/j.jsbmb.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides and their N'-(het)arylmethylene derivatives was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. A number of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides show significant cytotoxic effect comparable or superior to that for reference drug cisplatin. Compound 3l exhibits the highest activity with the IC50 value of about 2 μM and is 2.8 times more active than cisplatin. Hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides 3d, 3l and 3q are characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. The synthesized secosteroids may be considered as new promising antitumor agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.
| |
Collapse
|
6
|
Herman BE, Gardi J, Julesz J, Tömböly C, Szánti-Pintér E, Fehér K, Skoda-Földes R, Szécsi M. Steroidal ferrocenes as potential enzyme inhibitors of the estrogen biosynthesis. Biol Futur 2021; 71:249-264. [PMID: 34554507 DOI: 10.1007/s42977-020-00023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The potential inhibitory effect of diverse triazolyl-ferrocene steroids on key enzymes of the estrogen biosynthesis was investigated. Test compounds were synthesized via copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes using our efficient methodology published previously. Inhibition of human aromatase, steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities was investigated with in vitro radiosubstrate incubations. Some of the test compounds were found to be potent inhibitors of the STS. A compound bearing ferrocenyl side chain on the C-2 displayed a reversible inhibition, whereas C-16 and C-17 derivatives displayed competitive irreversible binding mechanism toward the enzyme. 17α-Triazolyl-ferrocene derivatives of 17β-estradiol exerted outstanding inhibitory effect and experiments demonstrated a key role of the ferrocenyl moiety in the enhanced binding affinity. Submicromolar IC50 and Ki parameters enroll these compounds to the group of the most effective STS inhibitors published so far. STS inhibitory potential of the steroidal ferrocenes may lead to the development of novel compounds able to suppress in situ biosynthesis of 17β-estradiol in target tissues.
Collapse
Affiliation(s)
- Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Gardi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Julesz
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, P. O. Box 521, Szeged, 6726, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Klaudia Fehér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary.
| |
Collapse
|
7
|
Herman BE, Kiss A, Wölfling J, Mernyák E, Szécsi M, Schneider G. Synthesis of substituted 15β-alkoxy estrone derivatives and their cofactor-dependent inhibitory effect on 17β-HSD1. J Enzyme Inhib Med Chem 2019; 34:1271-1286. [PMID: 31307240 PMCID: PMC6691805 DOI: 10.1080/14756366.2019.1634064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a key enzyme in the biosynthesis of 17β-estradiol. Novel estrone-based compounds bearing various 15β-oxa-linked substituents and hydroxy, methoxy, benzyloxy, and sulfamate groups in position C3 as potential 17β-HSD1 inhibitors have been synthesized. In addition, in vitro inhibitory potentials measured in the presence of excess amount of NADPH or NADH were investigated. We observed substantial inhibitory potentials for several derivatives (IC50 < 1 µM) and increased binding affinities compared to unsubstituted core molecules. Binding and inhibition were found to be cofactor-dependent for some of the compounds and we propose structural explanations for this phenomenon. Our results may contribute to the development of new 17β-HSD1 inhibitors, potential drug candidates for antiestrogen therapy of hormone-dependent gynecological cancers.
Collapse
Affiliation(s)
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Mihály Szécsi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Jójárt R, Pécsy S, Keglevich G, Szécsi M, Rigó R, Özvegy-Laczka C, Kecskeméti G, Mernyák E. Pd-Catalyzed microwave-assisted synthesis of phosphonated 13α-estrones as potential OATP2B1, 17β-HSD1 and/or STS inhibitors. Beilstein J Org Chem 2018; 14:2838-2845. [PMID: 30498534 PMCID: PMC6244214 DOI: 10.3762/bjoc.14.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Novel 2- or 4-phosphonated 13α-estrone derivatives were synthesized via the Hirao reaction. Bromo regioisomers (2- or 4-) of 13α-estrone and its 3-benzyl or 3-methyl ether were reacted with diethyl phosphite or diphenylphosphine oxide using Pd(PPh3)4 as catalyst under microwave irradiation. The influence of the new compounds on the transport function of the organic anion transporting polypeptide OATP2B1 was investigated by measuring Cascade Blue uptake. Derivatives bearing a 3-benzyl ether function displayed substantial submicromolar OATP2B1 inhibitory activity. The inhibitory effects of the compounds on human placental steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by in vitro radiosubstrate incubation methods. None of the test compounds inhibited the STS markedly. The structure-activity relationship evaluation revealed that 2-substituted 3-hydroxy derivatives are able to inhibit the 17β-HSD1 enzyme with submicromolar IC50 values. Dual OATP2B1 and 17β-HSD1 inhibitors have been identified.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Szabolcs Pécsy
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Réka Rigó
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Kecskeméti
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Bacsa I, Herman BE, Jójárt R, Herman KS, Wölfling J, Schneider G, Varga M, Tömböly C, Rižner TL, Szécsi M, Mernyák E. Synthesis and structure-activity relationships of 2- and/or 4-halogenated 13β- and 13α-estrone derivatives as enzyme inhibitors of estrogen biosynthesis. J Enzyme Inhib Med Chem 2018; 33:1271-1282. [PMID: 30230387 PMCID: PMC6147116 DOI: 10.1080/14756366.2018.1490731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ring A halogenated 13α-, 13β-, and 17-deoxy-13α-estrone derivatives were synthesised with N-halosuccinimides as electrophile triggers. Substitutions occurred at positions C-2 and/or C-4. The potential inhibitory action of the halogenated estrones on human aromatase, steroid sulfatase, or 17β-hydroxysteroid dehydrogenase 1 activity was investigated via in vitro radiosubstrate incubation. Potent submicromolar or low micromolar inhibitors were identified with occasional dual or multiple inhibitory properties. Valuable structure–activity relationships were established from the comparison of the inhibitory data obtained. Kinetic experiments performed with selected compounds revealed competitive reversible inhibition mechanisms against 17β-hydroxysteroid dehydrogenase 1 and competitive irreversible manner in the inhibition of the steroid sulfatase enzyme.
Collapse
Affiliation(s)
- Ildikó Bacsa
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | | | - Rebeka Jójárt
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | | | - János Wölfling
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Gyula Schneider
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mónika Varga
- c Department of Microbiology , University of Szeged, University of Szeged , Szeged , Hungary
| | - Csaba Tömböly
- d Laboratory of Chemical Biology , Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences , Szeged , Hungary
| | - Tea Lanišnik Rižner
- e Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Mihály Szécsi
- b 1st Department of Medicine , University of Szeged , Szeged , Hungary
| | - Erzsébet Mernyák
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| |
Collapse
|
10
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Bacsa I, Szemerédi D, Wölfling J, Schneider G, Fekete L, Mernyák E. The first Pd-catalyzed Buchwald-Hartwig aminations at C-2 or C-4 in the estrone series. Beilstein J Org Chem 2018; 14:998-1003. [PMID: 29977371 PMCID: PMC6009172 DOI: 10.3762/bjoc.14.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
A facile Pd-catalyzed C(sp2)–N coupling to provide a range of 2- or 4-[(subst.)phenyl]amino-13α-estrone derivatives has been achieved under microwave irradiation. The reactions were mediated with the use of Pd(OAc)2 as a catalyst and KOt-Bu as a base in the presence of X-Phos as a ligand. The desired products have been obtained in good to excellent yields. The nature and the position of the aniline substituent at the aromatic ring influenced the outcome of the couplings. 2-Amino-13α-estrone was also synthesized in a two-step protocol including an amination of 2-bromo-13α-estrone 3-benzyl ether with benzophenone imine and subsequent hydrogenolysis.
Collapse
Affiliation(s)
- Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Dávid Szemerédi
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Lilla Fekete
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
12
|
Bekić SS, Marinović MA, Petri ET, Sakač MN, Nikolić AR, Kojić VV, Ćelić AS. Identification of d-seco modified steroid derivatives with affinity for estrogen receptor α and β isoforms using a non-transcriptional fluorescent cell assay in yeast. Steroids 2018; 130:22-30. [PMID: 29224741 DOI: 10.1016/j.steroids.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Synthesis and biological evaluation of steroidal derivatives with anticancer properties is an active area of drug discovery. Here we measured the relative affinities of d-seco modified steroidal derivatives for estrogen receptor α, estrogen receptor β or androgen receptor ligand binding domains using an optimized non-transcriptional fluorescent cell assay in yeast. Ligand binding domains of steroid receptors were expressed in-frame with yellow fluorescent protein in the yeast Saccharomyces cerevisiae. Addition of known steroid ligands to yeast expressing the appropriate cognate receptor results in increased fluorescence intensity, enabling estimation of receptor binding affinities in a dose-response and time-dependent manner. Relative binding affinities of d-seco modified steroidal derivatives 1-4 were then evaluated using this yeast system by live cell fluorimetry and fluorescence microscopy, coupled with in vitro cytotoxicity and in silico molecular docking studies. d-Seco estratriene derivative 2displayed strong affinity for both estrogen receptor α and β ligand binding domains and negligible affinity for the androgen receptor ligand binding domain. Compound 2 also showed moderate cytotoxicity against estrogen receptor positive MCF-7 breast adenocarcinoma cells. In addition to identification of new ligands for steroid receptors, this assay could also be used to filter out compounds with potential for off-target interactions with steroid receptors during the early stages of compound screening.
Collapse
Affiliation(s)
- Sofija S Bekić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Maja A Marinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marija N Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Andrea R Nikolić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Andjelka S Ćelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia.
| |
Collapse
|
13
|
Bacsa I, Jójárt R, Wölfling J, Schneider G, Herman BE, Szécsi M, Mernyák E. Synthesis of novel 13α-estrone derivatives by Sonogashira coupling as potential 17β-HSD1 inhibitors. Beilstein J Org Chem 2017; 13:1303-1309. [PMID: 28694873 PMCID: PMC5496578 DOI: 10.3762/bjoc.13.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Novel 13α-estrone derivatives were synthesized by Sonogashira coupling. Transformations of 2- or 4-iodo regioisomers of 13α-estrone and its 3-methyl ether were carried out under different conditions in a microwave reactor. The 2-iodo isomers were reacted with para-substituted phenylacetylenes using Pd(PPh3)4 as catalyst and CuI as a cocatalyst. Coupling reactions of 4-iodo derivatives could be achieved by changing the catalyst to Pd(PPh3)2Cl2. The product phenethynyl derivatives were partially or fully saturated. Compounds bearing a phenolic OH group furnished benzofurans under the conditions used for the partial saturation. The inhibitory effects of the compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by an in vitro radiosubstrate incubation method. Certain 3-hydroxy-2-phenethynyl or -phenethyl derivatives proved to be potent 17β-HSD1 inhibitors, displaying submicromolar IC50 values.
Collapse
Affiliation(s)
- Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
14
|
Bodnár B, Mernyák E, Wölfling J, Schneider G, Herman BE, Szécsi M, Sinka I, Zupkó I, Kupihár Z, Kovács L. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone-Nucleoside Bioconjugates. Molecules 2016; 21:molecules21091212. [PMID: 27626395 PMCID: PMC6273310 DOI: 10.3390/molecules21091212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023] Open
Abstract
2′-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne–azide click reaction (CuAAC). For the introduction of the azido group the 5′-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3′-hydroxy groups of the nucleosides were protected by acetyl groups and the 5′-hydroxy groups were modified by the tosyl–azide exchange method. The commonly used conditions for click reaction between the protected-5′-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I) catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780) and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1) was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM). The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM).
Collapse
Affiliation(s)
- Brigitta Bodnár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|