1
|
Marchetti B, Bilel S, Tirri M, Corli G, Roda E, Locatelli CA, Cavarretta E, De-Giorgio F, Marti M. Acute Cardiovascular and Cardiorespiratory Effects of JWH-018 in Awake and Freely Moving Mice: Mechanism of Action and Possible Antidotal Interventions? Int J Mol Sci 2023; 24:7515. [PMID: 37108687 PMCID: PMC10142259 DOI: 10.3390/ijms24087515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
JWH-018 is the most known compound among synthetic cannabinoids (SCs) used for their psychoactive effects. SCs-based products are responsible for several intoxications in humans. Cardiac toxicity is among the main side effects observed in emergency departments: SCs intake induces harmful effects such as hypertension, tachycardia, chest pain, arrhythmias, myocardial infarction, breathing impairment, and dyspnea. This study aims to investigate how cardio-respiratory and vascular JWH-018 (6 mg/kg) responses can be modulated by antidotes already in clinical use. The tested antidotes are amiodarone (5 mg/kg), atropine (5 mg/kg), nifedipine (1 mg/kg), and propranolol (2 mg/kg). The detection of heart rate, breath rate, arterial oxygen saturation (SpO2), and pulse distention are provided by a non-invasive apparatus (Mouse Ox Plus) in awake and freely moving CD-1 male mice. Tachyarrhythmia events are also evaluated. Results show that while all tested antidotes reduce tachycardia and tachyarrhythmic events and improve breathing functions, only atropine completely reverts the heart rate and pulse distension. These data may suggest that cardiorespiratory mechanisms of JWH-018-induced tachyarrhythmia involve sympathetic, cholinergic, and ion channel modulation. Current findings also provide valuable impetus to identify potential antidotal intervention to support physicians in the treatment of intoxicated patients in emergency clinical settings.
Collapse
Affiliation(s)
- Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Roma, Italy;
- Mediterrranea Cardiocentro, 80122 Napoli, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, 00186 Rome, Italy
| |
Collapse
|
2
|
Mustikasari K, Trisno Santoso U. The Benefits of Chalcone and Its Derivatives as Antibacterial Agents: A Review. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202003007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chalcone is a secondary metabolite compound found in plants. Chalcones contain two aryl rings, namely ring A and B which connected to the α,β unsaturated ketones. Chalcone derivatives are synthesized by various substituent groups in both rings, as well as the types of rings. These variations make chalcone and its derivatives, have interesting bioactivity, one of which is antibacterial. This review is considered the chalcone-derived compounds that have antibacterial bioactivity, including methoxy, hydroxy, prenyl, and halogen groups in ring A or B. Besides, there are two forms of these rings as well such as pyrroly l-furany l-chalcones and indoly l-thiopheny l-chalcone. We hope this review is useful for the development of the synthesis of organic compounds and the discovery of new drug design.
Collapse
|
3
|
Zhang J, Chen Y, Sun Y, Wang R, Zhang J, Jia Z. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv 2018; 25:1175-1181. [PMID: 29790376 PMCID: PMC6058681 DOI: 10.1080/10717544.2018.1469687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nifedipine is completely absorbed by the gastrointestinal tract and its pharmacokinetics and metabolism may be influenced by microorganisms. If gut microbes are involved in the metabolism of nifedipine, plateau hypoxia may regulate the bioavailability and the therapeutic effect of nifedipine by altering the metabolic activity of the gut microbiota. We herein demonstrated for the first time that gut flora is involved in the metabolism of nifedipine by in vitro experiments. In addition, based on the results of 16S rRNA analysis of feces in rats after acute plateau, we first confirmed that the plateau environment could cause changes in the number and composition of intestinal microbes. More importantly, these changes in flora could lead to a slower metabolic activity of nifedipine in the body after an acute plateau, resulting in increased bioavailability and therapeutic efficacy of nifedipine. Our research will provide basis and new ideas for changes in the fecal flora of human acutely entering the plateau, and contribute to rational drug use of nifedipine.
Collapse
Affiliation(s)
- Juanhong Zhang
- a School of Pharmacy , Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| | - Yuyan Chen
- b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| | - Yuemei Sun
- a School of Pharmacy , Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| | - Rong Wang
- a School of Pharmacy , Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| | - Junmin Zhang
- a School of Pharmacy , Lanzhou University , Lanzhou , China
| | - Zhengping Jia
- a School of Pharmacy , Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| |
Collapse
|