1
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Öztürk C, Kalay E, Gerni S, Balci N, Tokali FS, Aslan ON, Polat E. Sulfonamide derivatives with benzothiazole scaffold: Synthesis and carbonic anhydrase I-II inhibition properties. Biotechnol Appl Biochem 2024; 71:223-231. [PMID: 37964505 DOI: 10.1002/bab.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Neslihan Balci
- Siran Dursun Keles Vocational School of Health Services, Gümüshane University, Gümüshane, Turkey
| | - Feyzi Sinan Tokali
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Osman Nuri Aslan
- East Anatolian High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emrah Polat
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
4
|
Abdoli M, Giovannuzzi S, Supuran CT, Žalubovskis R. 4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors. J Enzyme Inhib Med Chem 2022; 37:1568-1576. [PMID: 35635139 PMCID: PMC9154774 DOI: 10.1080/14756366.2022.2080816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Giovannuzzi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
5
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Synthesis, Crystal Structure, Inhibitory Activity and Molecular Docking of Coumarins/Sulfonamides Containing Triazolyl Pyridine Moiety as Potent Selective Carbonic Anhydrase IX and XII Inhibitors. CRYSTALS 2021. [DOI: 10.3390/cryst11091076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, two classes of Carbonic Anhydrase (CA) inhibitors, sulfonamide and coumarin derivatives linked to pyta moiety (2a-b) and their corresponding rhenium complexes (3a-b), were designed. These compounds were synthesized and fully characterized by classical analytical methods and X-ray diffraction. All the synthesized compounds were evaluated for their inhibitory activity against the hCA isoforms I, II, IX and XII. They exhibited high inhibitory activities in the range of nanomolar for both hCA IX and hCA XII isoforms. The sulfonamide compound 2a showed the strongest inhibition against the tumour-associated hCA IX isoform with a Ki of 11.7 nM. The tumour-associated isoforms hCA IX and hCA XII were selectively inhibited by all the coumarin derivatives, with inhibition constants ranging from 12.7 nM (2b) to 44.5 nM (3b), while the hCA I and II isoforms were slightly inhibited (in the micromolar range), as expected. In terms of selectivity, compared to previously published rhenium complex-based CA inhibitors, complex 3b showed one of the highest selectivities against hCA IX and hCA XII compared to the off-target isoforms hCA I and hCA II, making it a potential anti-cancer drug candidate. Molecular docking calculations were performed to investigate the inhibition profiles of the investigated compounds at the tumour-associated hCA IX active site and to rationalize our results.
Collapse
|
7
|
Holiyachi M, Shastri SL, Chougala BM, Naik NS, Pawar V, Shastri LA, Joshi SD, Sunagar VA. Design and synthesis of new series of dipyrromethane-coumarin and porphyrin-coumarin derivatives: Excellent anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cakmak EB, Zengin Kurt B, Ozturk Civelek D, Angeli A, Akdemir A, Sonmez F, Supuran CT, Kucukislamoglu M. Quinoline-sulfamoyl carbamates/sulfamide derivatives: Synthesis, cytotoxicity, carbonic anhydrase activity, and molecular modelling studies. Bioorg Chem 2021; 110:104778. [PMID: 33684713 DOI: 10.1016/j.bioorg.2021.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/15/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrase (CA) IX, and XII isoforms are known to be highly expressed in various human tissues and malignancies. CA IX is a prominent target for some cancers because it is overexpressed in hypoxic tumors and this overexpression leads to poor prognosis. Novel twenty-seven compounds in two series (sulfamoylcarbamate-based quinoline (2a-2o) and sulfamide-based quinoline (3a-3l)) were synthesized and characterized by means of IR, NMR, and mass spectra. Their inhibitory activities were evaluated against CA I, CA II, CA IX, and CA XII isoforms. 2-Phenylpropyl (N-(quinolin-8-yl)sulfamoyl)carbamate (2m) exhibited the highest hCA IX inhibition with the Ki of 0.5 µM. In addition, cytotoxic effects of the synthesized compounds on human colorectal adenocarcinoma (HT-29; HTB-38), human breast adenocarcinoma (MCF7; HTB-22), human prostate adenocarcinoma (PC3; CRL-1435) and human healthy skin fibroblast (CCD-986Sk; CRL-1947) cell lines were examined. The cytotoxicity results showed that 2j, 3a, 3e, 3f are most active compounds in all cell lines (HT-29, MCF7, PC3, and CCD-986Sk).
Collapse
Affiliation(s)
- Elmas Begum Cakmak
- Sakarya University, Institute of Natural Sciences, 54050 Sakarya, Turkey
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey.
| | - Dilek Ozturk Civelek
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, 34093 Istanbul, Turkey
| | - Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Atilla Akdemir
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, Computer-aided Drug Discovery Laboratory, 34093 Istanbul, Turkey
| | - Fatih Sonmez
- Sakarya University of Applied Sciences, Pamukova Vocational School, 54055 Sakarya, Turkey
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mustafa Kucukislamoglu
- Sakarya University, Faculty of Arts and Science, Department of Chemistry, 54050 Sakarya, Turkey
| |
Collapse
|
9
|
GÜZEL E, SÖNMEZ F, ERKAN S, ÇIKRIKÇI K, ERGÜN A, GENÇER N, ARSLAN O, KOÇAK MB. Evaluation of carbonic anhydrase and paraoxonase inhibition activities and molecular docking studies of highly water-soluble sulfonated phthalocyanines. Turk J Chem 2020; 44:1565-1573. [PMID: 33488253 PMCID: PMC7763127 DOI: 10.3906/kim-2007-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
The investigation of carbonic anhydrase and paraoxonase enzyme inhibition properties of water-soluble zinc and gallium phthalocyanine complexes ( 1 and 2 ) are reported for the first time. The binding of p-sulfonylphenoxy moieties to the phthalocyanine structure favors excellent solubilities in water, as well as providing an inhibition effect on carbonic anhydrase (CA) I and II isoenzymes and paraoxonase (PON1) enzyme. According to biological activity results, both complexes inhibited hCA I, hCA II, and PON1. Whereas 1 and 2 showed moderate hCA I and hCA II (off-target cytosolic isoforms) inhibitory activity (Ki values of 26.09 µM and 43.11 µM for hCA I and 30.95 µM and 33.19 µM for hCA II, respectively), they exhibited strong PON1 (associated with high-density lipoprotein [HDL]) inhibitory activity (Ki values of 0.37 µM and 0.27 µM, respectively). The inhibition kinetics were analyzed by Lineweaver-Burk double reciprocal plots. It revealed that 1 and 2 were noncompetitive inhibitors against PON1, hCA I, and hCA II. These complexes can be more advantageous than other synthetic CA and PON inhibitors due to their water solubility. Docking studies were carried out to examine the interactions between hCA I, hCA II, and PON1 inhibitors and metal complexes at a molecular level and to predict binding energies.
Collapse
Affiliation(s)
- Emre GÜZEL
- Department of Fundamental Sciences, Faculty of Technology, Sakarya University of Applied Sciences, SakaryaTurkey
| | - Fatih SÖNMEZ
- Pamukova Vocational School, Sakarya University of Applied Sciences, SakaryaTurkey
| | - Sultan ERKAN
- Chemistry and Chemical Processing Technologies, Yıldızeli Vocational School, Sivas Cumhuriyet University, SivasTurkey
| | - Kübra ÇIKRIKÇI
- Department of Chemistry, Faculty of Arts and Science, Balıkesir University, BalıkesirTurkey
| | - Adem ERGÜN
- Department of Chemistry, Faculty of Arts and Science, Balıkesir University, BalıkesirTurkey
| | - Nahit GENÇER
- Department of Chemistry, Faculty of Arts and Science, Balıkesir University, BalıkesirTurkey
| | - Oktay ARSLAN
- Department of Chemistry, Faculty of Arts and Science, Balıkesir University, BalıkesirTurkey
| | - Makbule B KOÇAK
- Department of Chemistry, Faculty of Arts and Science, İstanbul Technical University, İstanbulTurkey
| |
Collapse
|
10
|
Tugrak M, Gul HI, Demir Y, Gulcin I. Synthesis of benzamide derivatives with thiourea-substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000230. [PMID: 33043495 DOI: 10.1002/ardp.202000230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/21/2023]
Abstract
The novel compounds with the chemical structure of N-({4-[N'-(substituted)sulfamoyl]phenyl}carbamothioyl)benzamide (1a-g) and 4-fluoro-N-({4-[N'-(substituted)sulfamoyl]phenyl}carbamothioyl)benzamide (2a-g) were synthesized as potent and selective human carbonic anhydrase (hCA) I and hCA II candidate inhibitors. The aryl part was changed to sulfacetamide, sulfaguanidine, sulfanilamide, sulfathiazole, sulfadiazine, sulfamerazine, and sulfametazine. The Ki values of compounds 1a-g were in the range of 20.73 ± 4.32 to 59.55 ± 13.07 nM (hCA I) and 5.69 ± 0.43 to 44.81 ± 1.08 nM (hCA II), whereas the Ki values of compounds 2a-g were in the range of 13.98 ± 2.57 to 75.74 ± 13.51 nM (hCA I) and 8.15 ± 1.5 to 49.86 ± 6.18 nM (hCA II). Comparing the Ki values of the final compounds and acetazolamide, compound 1c with the sulfanilamide moiety (Ki = 5.69 ± 0.43 nM, 8.8 times) and 2f with the sulfamerazine moiety (Ki = 8.15 ± 1.5 nM, 6.2 times) demonstrated promising and selective inhibitory effects against the hCA II isoenzyme, the main target protein in glaucoma. Furthermore, compounds 1d (Ki = 20.73 ± 4.32, 4 times) and 2d (Ki = 13.98 ± 2.57, 5.9 times), which have the sulfathiazole moiety, were found as potent hCA I inhibitors. Compounds 1c and 2f can be considered as the lead compounds determined in the present study, which can be investigated further to alleviate glaucoma symptoms.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
12
|
Alhameed RA, Berrino E, Almarhoon Z, El-Faham A, Supuran CT. A class of carbonic anhydrase IX/XII - selective carboxylate inhibitors. J Enzyme Inhib Med Chem 2020; 35:549-554. [PMID: 31967484 PMCID: PMC7006686 DOI: 10.1080/14756366.2020.1715388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A small series of 2,4-dioxothiazolidinyl acetic acids was prepared from thiourea, chloroacetic acid, aromatic aldehydes, and ethyl-2-bromoacetate. They were assayed for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, the cytosolic hCA I and II, and the transmembrane hCA IX and XII, involved among others in tumorigenesis (hCA IX and XII) and glaucoma (hCA II and XII). The two cytosolic isoforms were not inhibited by these carboxylates, which were also rather ineffective as hCA IX inhibitors. On the other hand, they showed submicromolar hCA XII inhibition, with KIs in the range of 0.30–0.93 µM, making them highly CA XII-selective inhibitors.
Collapse
Affiliation(s)
- Rakia Abd Alhameed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Emanuela Berrino
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Zainab Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Pustenko A, Nocentini A, Balašova A, Krasavin M, Žalubovskis R, Supuran CT. 7-Acylamino-3H-1,2-benzoxathiepine 2,2-dioxides as new isoform-selective carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2020; 35:650-656. [PMID: 32079427 PMCID: PMC7048192 DOI: 10.1080/14756366.2020.1722658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A series of 3H-1,2-benzoxathiepine 2,2-dioxides incorporating 7-acylamino moieties were obtained by an original procedure starting from 5-nitrosalicylaldehyde, which was treated with propenylsulfonyl chloride followed by Wittig reaction of the bis-olefin intermediate. The new derivatives, belonging to the homosulfocoumarin chemotype, were assayed as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Four pharmacologically relevant human (h) isoforms were investigated, the cytosolic hCA I and II and the transmembrane, tumour-associated hCA IX and XII. No relevant inhibition of hCA I and II was observed, whereas some of the new derivatives were effective, low nanomolar hCA IX/XII inhibitors, making them of interest for investigations in situations in which the activity of these isoforms is overexpressed, such as hypoxic tumours, arthritis or cerebral ischaemia.
Collapse
Affiliation(s)
- Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Mikhail Krasavin
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
14
|
Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. Eur J Med Chem 2019; 183:111702. [PMID: 31542715 DOI: 10.1016/j.ejmech.2019.111702] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Carbonic anhydrases isoforms CA IX, and XII are known to be highly expressed in various human tissues and malignancies. CA IX is a prominent target for especially colorectal cancers, because it is overexpressed in colorectal cancer and this overexpression leads poor prognosis. Inhibition of CA IX activity by small molecule CA inhibitors like sulfonamides, sulfonamide derivative or coumarins leads to inhibition of tumorigenesis. Novel twenty-seven compounds in three series (sulfonamide-based imines (6a-6i), coumarin-based aldehydes (7a-7i), and coumarin-sulfonamide-based target molecules (8a-8i)) were synthesized and characterized by means of IR, NMR, and mass spectra. All compounds were tested for their ability to inhibit CA I, CA II, CA IX, and CA XII isoforms. 4-((((2-((1-(3-((2-oxo-2H-chromen-7-yl)oxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)naphthalen-1-yl)-methylene)amino)methyl)benzenesulfonamide (8i) exhibited the highest hCA IX inhibition with the Ki of 45.5 nM. In addition, 8i was found to be potent in inhibiting cancer cell proliferation as selective (IC50 = 17.01 ± 1.35 μM for HT-29, IC50 = 118.73 ± 1.19 μM for HEK293T). This novel compound inhibited the CA IX and CA XII protein expression in HT-29 cells. These findings indicate that 8i can inhibit cellular proliferation in human colon cancer cells by specifically targeting the CA IX and CA XII expression.
Collapse
|
15
|
Ammazzalorso A, Carradori S, Angeli A, Akdemir A, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R, Supuran CT. Fibrate-based N-acylsulphonamides targeting carbonic anhydrases: synthesis, biochemical evaluation, and docking studies. J Enzyme Inhib Med Chem 2019; 34:1051-1061. [PMID: 31074307 PMCID: PMC6522927 DOI: 10.1080/14756366.2019.1611801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising submicromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Cα carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct interaction with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of less investigated secondary sulphonamides as potential hCA inhibitors.
Collapse
Affiliation(s)
| | - Simone Carradori
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Andrea Angeli
- b Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - Atilla Akdemir
- c Department of Pharmacology, Faculty of Pharmacy, Computer-Aided Drug Discovery Laboratory , Bezmialem Vakif University , Istanbul , Turkey
| | - Barbara De Filippis
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Marialuigia Fantacuzzi
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Letizia Giampietro
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Cristina Maccallini
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Rosa Amoroso
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Claudiu T Supuran
- b Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy.,d Neurofarba Department , Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
16
|
Kurt BZ, Dag A, Doğan B, Durdagi S, Angeli A, Nocentini A, Supuran CT, Sonmez F. Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma. Bioorg Chem 2019; 87:838-850. [PMID: 31003041 DOI: 10.1016/j.bioorg.2019.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/14/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
Abstract
A series of novel bis-coumarin derivatives containing triazole moiety as a linker between the alkyl chains was synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms I, II, IX and XII were evaluated. In addition, cytotoxic effects of the synthesized compounds on renal adenocarcinoma (769P), hepatocellular carcinoma (HepG2) and breast adeno carcinoma (MDA-MB-231) cell lines were examined. While the hCA I and II isoforms were inhibited in the micromolar range, the tumor-associated isoform hCA IX and XII were inhibited in the high nanomolar range. 4-methyl-7-((1-(12-((2-oxo-2H-chromen-7-yl)oxy)dodecyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5p) showed the strongest inhibitory activity against hCA IX with the Ki of 144.6 nM and 4-methyl-7-((1-(10-((2-oxo-2H-chromen-7-yl)oxy)decyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5n) exhibited the highest hCA XII inhibition with the Ki of 71.5 nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modelling approaches were applied. Low energy docking poses of studied molecules at the binding sites of targets have been predicted. In addition, electrostatic potential surfaces (ESP) for binding sites were also generated to understand interactions between proteins and active ligands.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey.
| | - Aydan Dag
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey
| | - Berna Doğan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fatih Sonmez
- Sakarya University of Applied Sciences, Pamukova Vocational Highschool, Pamukova, Turkey
| |
Collapse
|
17
|
Thacker PS, Alvala M, Arifuddin M, Angeli A, Supuran CT. Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg Chem 2019; 86:386-392. [PMID: 30763885 DOI: 10.1016/j.bioorg.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/15/2022]
Abstract
A series of novel 7-hydroxycoumarin-3-carboxamides was synthesized by the reaction of 7-hydroxy-2-oxo-2H-chromene-3-carboxylic acid with various substituted aromatic amines. The newly synthesized compounds were evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results show that the newly synthesized 7-hydroxycoumarin-3-carboxamides (4a-n) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. The inhibition constants ranged from sub micromolar to low micromolar. Amongst all the compounds tested, compound 4m was the most effective inhibitor exhibiting sub micromolar potency against both hCA IX and hCA XII, with a Ki of 0.2 µM. Therefore, it can be anticipated that compound 4m can serve as a lead for development of anticancer therapy by exhibiting a novel mechanism of action. The binding modes of the most potent compounds within hCA IX and XII catalytic clefts were investigated by docking studies.
Collapse
Affiliation(s)
- Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
18
|
Saeed A, Mustafa MN, Zain-ul-Abideen M, Shabir G, Erben MF, Flörke U. Current developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3- (substituted)thioureas: advances Continue …. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1551488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University-45320, Islamabad, Pakistan
| | | | | | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University-45320, Islamabad, Pakistan
| | - Mauricio F. Erben
- CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata, República Argentina
| | - Ulrich Flörke
- Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn Paderborn, Germany
| |
Collapse
|
19
|
Angeli A, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Donald WA, Capasso C, Supuran CT. Activation studies with amines and amino acids of the β-carbonic anhydrase encoded by the Rv3273 gene from the pathogenic bacterium Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2018; 33:364-369. [PMID: 29322836 PMCID: PMC6009870 DOI: 10.1080/14756366.2017.1422250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
The activation of a β-class carbonic anhydrase (CAs, EC 4.2.1.1) from Mycobacterium tuberculosis, encoded by the gene Rv3273 (mtCA 3), was investigated using a panel of natural and non-natural amino acids and amines. mtCA 3 was effectively activated by D-DOPA, L-Trp, dopamine and serotonin, with KAs ranging between 8.98 and 12.1 µM. L-His and D-Tyr showed medium potency activating effects, with KAs in the range of 17.6-18.2 µM, whereas other amines and amino acids were relatively ineffective activators, with KAs in the range of 28.9-52.2 µM. As the physiological roles of the three mtCAs present in this pathogen are currently poorly understood and considering that inhibition of these enzymes has strong antibacterial effects, discovering molecules that modulate their enzymatic activity may lead to a better understanding of the factors related to the invasion and colonisation of the host during Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Sonia Del Prete
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- CNR, Istituto di Bioscienze e Biorisorse, Napoli, Italy
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah A. S. Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | | | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Angeli A, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Donald WA, Capasso C, Supuran CT. Activation studies of the α- and β-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with amines and amino acids. J Enzyme Inhib Med Chem 2018; 33:227-233. [PMID: 29231751 PMCID: PMC7012002 DOI: 10.1080/14756366.2017.1412316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 10/27/2022] Open
Abstract
The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had KAs in the range of 8.21-12.0 µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had KAs in the submicromolar - low micromolar range (0.18-1.37 µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (KA of 180 nm for VchCAβ, and more than 20 µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Sonia Del Prete
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah A. S. Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | | | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- School of Chemistry, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Angeli A, Trallori E, Carta F, Di Cesare Mannelli L, Ghelardini C, Supuran CT. Heterocoumarins Are Selective Carbonic Anhydrase IX and XII Inhibitors with Cytotoxic Effects against Cancer Cells Lines. ACS Med Chem Lett 2018; 9:947-951. [PMID: 30258546 DOI: 10.1021/acsmedchemlett.8b00362] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
We have synthesized a new series of coumarin-based compounds demonstrating high selectivity and potent effects with low nanomolar affinity against the tumor associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA IX and XII. A number of these compounds were evaluated ex vivo against human prostate (PC3) and breast (MDA-MB-231) cancer cell lines. Compounds 4b and 15 revealed effective cytotoxic effects after 48 h of incubation in both normoxic and hypoxic conditions with PC3 cancer cell line. However, compound 3 showed selective cytotoxic effects against MDA-MB-231 in hypoxic condition. These results may be of particular importance for the choice of future drug candidates targeting hypoxic tumors and metastases, considering the fact that a selective carbonic anhydrase CA IX inhibitor (SLC-0111) is presently in phase II clinical trials.
Collapse
Affiliation(s)
- Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Elena Trallori
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Claudiu T. Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
22
|
Gondru R, Sirisha K, Raj S, Gunda SK, Kumar CG, Pasupuleti M, Bavantula R. Design, Synthesis, In Vitro Evaluation and Docking Studies of Pyrazole-Thiazole Hybrids as Antimicrobial and Antibiofilm Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201801391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ramesh Gondru
- Department of Chemistry; National Institute of Technology; Warangal-506004, Telangana State India
| | - K Sirisha
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad 500007, Telangana India
| | - Sneha Raj
- Division of Microbiology; CSIR−Central Drug Research Institute, Sector 10, Jankipuram extension; Sitapur Road Lucknow-226031, Uttar Pradesh India
| | - Shravan Kumar Gunda
- Bioinformatics Division; PGRRCDE; Osmania University; Hyderabad-500007, Telangana India
| | - C Ganesh Kumar
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad 500007, Telangana India
| | - Mukesh Pasupuleti
- Division of Microbiology; CSIR−Central Drug Research Institute, Sector 10, Jankipuram extension; Sitapur Road Lucknow-226031, Uttar Pradesh India
| | - Rajitha Bavantula
- Department of Chemistry; National Institute of Technology; Warangal-506004, Telangana State India
| |
Collapse
|
23
|
Kurt BZ, Gazioglu I, Kandas NO, Sonmez F. Synthesis, Anticholinesterase, Antioxidant, and Anti-Aflatoxigenic Activity of Novel Coumarin Carbamate Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201800142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Belma Zengin Kurt
- Bezmialem Vakif University; Faculty of Pharmacy; Department of Pharmaceutical Chemistry; 34093 Istanbul TURKEY
| | - Isil Gazioglu
- Bezmialem Vakif University; Faculty of Pharmacy; Department of Analytical Chemistry; 34093 Istanbul TURKEY
| | - Nur Ozten Kandas
- Bezmialem Vakif University; Faculty of Pharmacy; Department of Pharmaceutical Toxicology; 34093 Istanbul TURKEY
| | - Fatih Sonmez
- Sakarya University; Faculty of Arts and Science; Department of Chemistry; 54055 Sakarya TURKEY
| |
Collapse
|