1
|
Torzyk-Jurowska K, Ciekot J, Winiarski L. Targeted Library of Phosphonic-Type Inhibitors of Human Neutrophil Elastase. Molecules 2024; 29:1120. [PMID: 38474630 DOI: 10.3390/molecules29051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the extracellular matrix. Overexpression or dysregulation of HNE may lead to the development of several inflammatory diseases. Previously, we presented the HNE inhibitor with kinact/KI value over 2,000,000 [M-1s-1]. In order to optimize its structure, over 100 novel tripeptidyl derivatives of α-aminoalkylphosphonate diaryl esters were synthesized, and their activity toward HNE was checked. To confirm the selectivity of the resultant compounds, several of the most active were additionally checked against the two other neutrophil proteases: proteinase 3 and cathepsin G. The developed modifications allowed us to obtain a compound with significantly increased inhibitory activity against human neutrophil elastase with high selectivity toward cathepsin G, but none toward proteinase 3.
Collapse
Affiliation(s)
- Karolina Torzyk-Jurowska
- Division of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jaroslaw Ciekot
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Lukasz Winiarski
- Division of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Ji S, Verhelst SHL. Furin-targeting activity-based probes with phosphonate and phosphinate esters as warheads. Org Biomol Chem 2023; 21:6498-6502. [PMID: 37530461 DOI: 10.1039/d3ob00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Activity-based probes (ABPs) are covalent chemical tools that are widely used to target proteases in chemical biology. Here, we report a series of novel ABPs for the serine protease furin with phosphonate and phosphinate esters as reactive electrophiles. We show that these probes covalently label furin and have nanomolar potencies, because of proposed interactions with the different recognition pockets around the active site of furin.
Collapse
Affiliation(s)
- Shanping Ji
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, 3000 Leuven, Belgium.
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, 3000 Leuven, Belgium.
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences - ISAS, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Synthesis of Indolylaminophosphonic Acids as Promising Biologically Active Compounds with Wide Spectra of Pharmacological Action. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Samrat SK, Xu J, Li Z, Zhou J, Li H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022; 11:293. [PMID: 35335617 PMCID: PMC8955721 DOI: 10.3390/pathogens11030293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses cause a significant amount of mortality and morbidity, especially in regions where they are endemic. A recent example is the outbreak of Zika virus throughout the world. Development of antiviral drugs against different viral targets is as important as the development of vaccines. During viral replication, a single polyprotein precursor (PP) is produced and further cleaved into individual proteins by a viral NS2B-NS3 protease complex together with host proteases. Flavivirus protease is one of the most attractive targets for development of therapeutic antivirals because it is essential for viral PP processing, leading to active viral proteins. In this review, we have summarized recent development in drug discovery targeting the NS2B-NS3 protease of flaviviruses, especially Zika, dengue, and West Nile viruses.
Collapse
Affiliation(s)
- Subodh K. Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Zdończyk M, Potaniec B, Skoreński M, Cybińska J. Development of Efficient One-Pot Methods for the Synthesis of Luminescent Dyes and Sol-Gel Hybrid Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 15:203. [PMID: 35009348 PMCID: PMC8746091 DOI: 10.3390/ma15010203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
This paper presents a comparison of the simultaneous preparation of di-O-alkylated and ether-ester derivatives of fluorescein using different methods (conventional or microwave heating). Shortening of the reaction time and increased efficiency were observed when using a microwave reactor. Moreover, described here for the first time is the application of a fast, simple, and eco-friendly ball-assisted method to exclusively obtain ether-ester derivatives. We also demonstrate that fluorescein can be effectively functionalized by O-alkylation carried out under microwave or ball-milling conditions, saving time and energy and affording the desired products with good yields and minimal byproduct formation. All the synthesized products as well as pH-dependent (prototropic) forms trapped in the SiO2 matrix were examined using UV-Vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Maria Zdończyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14 Street, 50-383 Wrocław, Poland;
- Advanced Materials Synthesis Group, Łukasiewicz Research Network—PORT Polish Center for Technology, Stabłowicka 147 Street, 54-066 Wrocław, Poland; (B.P.); (M.S.)
| | - Bartłomiej Potaniec
- Advanced Materials Synthesis Group, Łukasiewicz Research Network—PORT Polish Center for Technology, Stabłowicka 147 Street, 54-066 Wrocław, Poland; (B.P.); (M.S.)
| | - Marcin Skoreński
- Advanced Materials Synthesis Group, Łukasiewicz Research Network—PORT Polish Center for Technology, Stabłowicka 147 Street, 54-066 Wrocław, Poland; (B.P.); (M.S.)
| | - Joanna Cybińska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14 Street, 50-383 Wrocław, Poland;
- Advanced Materials Synthesis Group, Łukasiewicz Research Network—PORT Polish Center for Technology, Stabłowicka 147 Street, 54-066 Wrocław, Poland; (B.P.); (M.S.)
| |
Collapse
|
6
|
Ceradini D, Shubin K. One-pot synthesis of α-aminophosphonates by yttrium-catalyzed Birum-Oleksyszyn reaction. RSC Adv 2021; 11:39147-39152. [PMID: 35492473 PMCID: PMC9044477 DOI: 10.1039/d1ra07718j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
For the first time, yttrium triflate was used as an efficient green catalyst for the synthesis of α-aminophosphonates through a one-pot three-component Birum–Oleksyszyn reaction. Under the action of this Lewis acid, enhancement of the yield and reaction chemoselectivity was provided by the achievement of an appropriate balance in the complex network of reactions. For the first time, yttrium triflate was used as an efficient green catalyst for the synthesis of α-aminophosphonates through a one-pot three-component Birum–Oleksyszyn reaction.![]()
Collapse
Affiliation(s)
- Davide Ceradini
- Latvian Institute of Organic Synthesis 21 Aizkraukles St. Riga LV-1006 Latvia
| | - Kirill Shubin
- Latvian Institute of Organic Synthesis 21 Aizkraukles St. Riga LV-1006 Latvia
| |
Collapse
|
7
|
Voss S, Nitsche C. Targeting the protease of West Nile virus. RSC Med Chem 2021; 12:1262-1272. [PMID: 34458734 PMCID: PMC8372202 DOI: 10.1039/d1md00080b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
West Nile virus infections can cause severe neurological symptoms. During the last 25 years, cases have been reported in Asia, North America, Africa, Europe and Australia (Kunjin). No West Nile virus vaccines or specific antiviral therapies are available to date. Various viral proteins and host-cell factors have been evaluated as potential drug targets. The viral protease NS2B-NS3 is among the most promising viral targets. It releases viral proteins from a non-functional polyprotein precursor, making it a critical factor of viral replication. Despite strong efforts, no protease inhibitors have reached clinical trials yet. Substrate-derived peptidomimetics have facilitated structural elucidations of the active protease state, while alternative compounds with increased drug-likeness have recently expanded drug discovery efforts beyond the active site.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
8
|
Walczak M, Chryplewicz A, Olewińska S, Psurski M, Winiarski Ł, Torzyk K, Oleksyszyn J, Sieńczyk M. Phosphonic Analogs of Alanine as Acylpeptide Hydrolase Inhibitors. Chem Biodivers 2021; 18:e2001004. [PMID: 33427376 DOI: 10.1002/cbdv.202001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022]
Abstract
Acylpeptide hydrolase is a serine protease, which, together with prolyl oligopeptidase, dipeptidyl peptidase IV and oligopeptidase B, belongs to the prolyl oligopeptidase family. Its primary function is associated with the removal of N-acetylated amino acid residues from proteins and peptides. Although the N-acylation occurs in 50-90 % of eukaryotic proteins, the precise functions of this modification remains unclear. Recent findings have indicated that acylpeptide hydrolase participates in various events including oxidized proteins degradation, amyloid β-peptide cleavage, and response to DNA damage. Considering the protein degradation cycle cross-talk between acylpeptide hydrolase and proteasome, inhibition of the first enzyme resulted in down-regulation of the ubiquitin-proteasome system and induction of cancer cell apoptosis. Acylpeptide hydrolase has been proposed as an interesting target for the development of new potential anticancer agents. Here, we present the synthesis of simple derivatives of (1-aminoethyl)phosphonic acid diaryl esters, phosphonic analogs of alanine diversified at the N-terminus and ester rings, as inhibitors of acylpeptide hydrolase and discuss the ability of the title compounds to induce apoptosis of U937 and MV-4-11 tumor cell lines.
Collapse
Affiliation(s)
- Maciej Walczak
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Agnieszka Chryplewicz
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Sandra Olewińska
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Łukasz Winiarski
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Karolina Torzyk
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Józef Oleksyszyn
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Sieńczyk
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
9
|
Iwanejko J, Wojaczyńska E, Turlej E, Maciejewska M, Wietrzyk J. Octahydroquinoxalin-2(1 H)-One-Based Aminophosphonic Acids and Their Derivatives-Biological Activity Towards Cancer Cells. MATERIALS 2020; 13:ma13102393. [PMID: 32455965 PMCID: PMC7287629 DOI: 10.3390/ma13102393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 01/27/2023]
Abstract
In the search for new antitumor agents, aminophosphonic acids and their derivatives based on octahydroquinoxalin-2(1H)-one scaffold were obtained and their cytotoxic properties and a mechanism of action were evaluated. Phosphonic acid and phosphonate moieties increased the antiproliferative activity in comparison to phenolic Mannich bases previously reported. Most of the obtained compounds revealed a strong antiproliferative effect against leukemia cell line (MV-4-11) with simultaneous low cytotoxicity against normal cell line (mouse fibroblasts-BALB/3T3). The most active compound was diphenyl-[(1R,6R)-3-oxo-2,5-diazabicyclo[4.4.0]dec-4-yl]phosphonate. Preliminary evaluation of the mechanism of action showed the proapoptotic effect associated with caspase 3/7 induction.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-320-2410
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| |
Collapse
|
10
|
|
11
|
Khalid M, Ali A, De la Torre AF, Marrugo KP, Concepcion O, Kamal GM, Muhammad S, Al‐Sehemi AG. Facile Synthesis, Spectral (IR, Mass, UV−Vis, NMR), Linear and Nonlinear Investigation of the Novel Phosphonate Compounds: A Combined Experimental and Simulation Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Akbar Ali
- Department of ChemistryUniversity of Sargodha, 40100 Pakistan
| | - Alexander F. De la Torre
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Kelly P. Marrugo
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Odette Concepcion
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Ghulam Mustafa Kamal
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Shabbir Muhammad
- Department of Physics, College of ScienceKing Khalid University Abha 61413, P.O. Box 9004 Saudi Arabia
| | - Abdullah G. Al‐Sehemi
- Department of Chemistry, College of ScienceKing Khalid University Abha 61413, P.O. Box 9004 Saudi Arabia
| |
Collapse
|
12
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Rut W, Groborz K, Zhang L, Modrzycka S, Poreba M, Hilgenfeld R, Drag M. Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Res 2020; 175:104731. [PMID: 32014497 DOI: 10.1016/j.antiviral.2020.104731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) and Dengue virus (DENV) are mosquito-borne pathogenic flaviviruses. The NS2B-NS3 proteases found in these viruses are responsible for polyprotein processing and are therefore considered promising medical targets. Another ortholog of these proteases is found in Zika virus (ZIKV). In this work, we applied a combinatorial chemistry approach - Hybrid Combinatorial Substrate Library (HyCoSuL), to compare the substrate specificity profile at the P4-P1 positions of the NS2B-NS3 proteases found in all three viruses. The obtained data demonstrate that Zika and West Nile virus NS2B-NS3 proteases display highly overlapping substrate specificity in all binding pockets, while the Dengue ortholog has slightly different preferences toward natural and unnatural amino acids at the P2 and P4 positions. We used this information to extract specific peptide sequences recognized by the Dengue NS2B-NS3 protease. Next, we applied this knowledge to design a selective substrate and activity-based probe for the Dengue NS2B-NS3 protease. Our work provides a structural framework for the design of inhibitors, which could be used as a lead structure for drug development efforts.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Linlin Zhang
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
14
|
Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel) 2019; 12:ph12020086. [PMID: 31185654 PMCID: PMC6631691 DOI: 10.3390/ph12020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
This review presents current achievements in peptidyl diaryl phosphonates as covalent, specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases. Such an impact has been promoted by advantageous features that characterize the phosphonate compounds and their use. First, the synthesis is versatile and allows comprehensive structural modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules can be easily controlled by appropriate adjustments of the side chains and the leaving groups. Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates continuously increases and involves novel enzymatic targets and innovative aspects of application. For example, conjugation of the structures of specific inhibitors with reporter groups has become a convenient approach to construct activity-based molecular probes capable of monitoring location and distribution of serine proteases.
Collapse
|