1
|
Pachón-Angona I, Bernard PJ, Simakov A, Maj M, Jozwiak K, Novotna A, Lemke C, Gütschow M, Martin H, Oset-Gasque MJ, Contelles JM, Ismaili L. Design and Synthesis of Multi-Functional Ligands through Hantzsch Reaction: Targeting Ca 2+ Channels, Activating Nrf2 and Possessing Cathepsin S Inhibitory, and Antioxidant Properties. Pharmaceutics 2024; 16:121. [PMID: 38258131 PMCID: PMC10819521 DOI: 10.3390/pharmaceutics16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4a-l, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference with Nrf2 transcriptional activation. Of these MTDLs, 4i emerged as a promising compound, demonstrating robust antioxidant activity, the ability to activate Nrf2-ARE pathways, as well as calcium channel blockade and cathepsin S inhibition. Dihydropyridine 4i represents the first example of an MTDL that combines these biological activities.
Collapse
Affiliation(s)
- Irene Pachón-Angona
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000 Besançon, France; (I.P.-A.); (P.J.B.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Paul J. Bernard
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000 Besançon, France; (I.P.-A.); (P.J.B.)
| | - Alexey Simakov
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; (A.S.); (H.M.)
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland; (M.M.); (K.J.)
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland; (M.M.); (K.J.)
| | - Anna Novotna
- Pharmaceutical Institut, An der Immenburg 4, D-53121 Bonn, Germany; (A.N.); (C.L.); (M.G.)
| | - Carina Lemke
- Pharmaceutical Institut, An der Immenburg 4, D-53121 Bonn, Germany; (A.N.); (C.L.); (M.G.)
| | - Michael Gütschow
- Pharmaceutical Institut, An der Immenburg 4, D-53121 Bonn, Germany; (A.N.); (C.L.); (M.G.)
| | - Helene Martin
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France; (A.S.); (H.M.)
| | - María-Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - José-Marco Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000 Besançon, France; (I.P.-A.); (P.J.B.)
| |
Collapse
|
2
|
Dakhlaoui I, Bernard PJ, Pietrzak D, Simakov A, Maj M, Refouvelet B, Béduneau A, Cornu R, Jozwiak K, Chabchoub F, Iriepa I, Martin H, Marco-Contelles J, Ismaili L. Exploring the Potential of Sulfonamide-Dihydropyridine Hybrids as Multitargeted Ligands for Alzheimer's Disease Treatment. Int J Mol Sci 2023; 24:ijms24119742. [PMID: 37298693 DOI: 10.3390/ijms24119742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that has a heavy social and economic impact on all societies and for which there is still no cure. Multitarget-directed ligands (MTDLs) seem to be a promising therapeutic strategy for finding an effective treatment for this disease. For this purpose, new MTDLs were designed and synthesized in three steps by simple and cost-efficient procedures targeting calcium channel blockade, cholinesterase inhibition, and antioxidant activity. The biological and physicochemical results collected in this study allowed us the identification two sulfonamide-dihydropyridine hybrids showing simultaneous cholinesterase inhibition, calcium channel blockade, antioxidant capacity and Nrf2-ARE activating effect, that deserve to be further investigated for AD therapy.
Collapse
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
- Laboratory of Applied Chemistry, Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Paul J Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| | - Diana Pietrzak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Alexey Simakov
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Bernard Refouvelet
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| | - Arnaud Béduneau
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Raphaël Cornu
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry, Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Isabel Iriepa
- Department of Organic Chemistry and Inorganic Chemistry, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871 Alcalá de Henares, Spain
| | - Helene Martin
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
3
|
Malek R, Simakov A, Davis A, Maj M, Bernard PJ, Wnorowski A, Martin H, Marco-Contelles J, Chabchoub F, Dallemagne P, Rochais C, Jozwiak K, Ismaili L. Biginelli Reaction Synthesis of Novel Multitarget-Directed Ligands with Ca 2+ Channel Blocking Ability, Cholinesterase Inhibition, Antioxidant Capacity, and Nrf2 Activation. Molecules 2022; 28:molecules28010071. [PMID: 36615267 PMCID: PMC9822022 DOI: 10.3390/molecules28010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Novel multitarget-directed ligands BIGI 4a-d and BIGI 5a-d were designed and synthesized with a simple and cost-efficient procedure via a one-pot three-component Biginelli reaction targeting acetyl-/butyrylcholinesterases inhibition, calcium channel antagonism, and antioxidant ability. Among these multitarget-directed ligands, BIGI 4b, BIGI 4d, and BIGI 5b were identified as promising new hit compounds showing in vitro balanced activities toward the recognized AD targets. In addition, these compounds showed suitable physicochemical properties and a good druglikeness score predicted by Data Warrior software.
Collapse
Affiliation(s)
- Rim Malek
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, University Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Alexey Simakov
- PEPITE EA4267, University Franche-Comté, F-25000 Besançon, France
| | - Audrey Davis
- Centre d’Etudes et de Recherche sur le Médicament de Normandie, Normandie University, Unicaen, CERMN, 14000 Caen, France
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Paul J. Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, University Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Helene Martin
- PEPITE EA4267, University Franche-Comté, F-25000 Besançon, France
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Patrick Dallemagne
- Centre d’Etudes et de Recherche sur le Médicament de Normandie, Normandie University, Unicaen, CERMN, 14000 Caen, France
| | - Christophe Rochais
- Centre d’Etudes et de Recherche sur le Médicament de Normandie, Normandie University, Unicaen, CERMN, 14000 Caen, France
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, University Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France
- Correspondence:
| |
Collapse
|
4
|
Emami S, Ahmadi R, Ahadi H, Ashooriha M. Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Brtko J. Biological functions of kojic acid and its derivatives in medicine, cosmetics, and food industry: Insights into health aspects. Arch Pharm (Weinheim) 2022; 355:e2200215. [DOI: 10.1002/ardp.202200215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Julius Brtko
- Department of Endocrine Regulations and Psychopharmacology, Biomedical Research Center of the Slovak Academy of Sciences Institute of Experimental Endocrinology Bratislava Slovak Republic
| |
Collapse
|
6
|
Dakhlaoui I, Maalej E, Martin H, Lucht A, Iriepa I, Moraleda I, Marco‐Contelles J, Chabchoub F, Ismaili L. Synthesis and Biological Assessment of PyrimidoTacrines as Promising Agents for Alzheimer's Disease Therapy. ChemistrySelect 2021. [DOI: 10.1002/slct.202102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire de Chimie Appliquée: Hétérocycles Corps Gras et Polymères Faculté des Sciences de Sfax Université de Sfax. B. P 802.3000 Sfax Tunisie
- UR Neurosciences Medicinal chemistry group Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| | - Emna Maalej
- Laboratoire Matériaux Traitement et Analyse (LMTA) Institut National de Recherche et d'Analyse Physico-chimique Technopole Ariana Tunisia
| | - Helene Martin
- PEPITE EA4267 Laboratoire de Toxicologie Cellulaire Univ. Bourgogne Franche-Comté F-25000 Besançon France
| | - Aurélia Lucht
- UR Neurosciences Medicinal chemistry group Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| | - Isabel Iriepa
- Organic and Inorganic Chemistry Department. Ctra. Madrid-Barcelona, Km. 33, 6 University of Alcala 28871 Madrid Spain
| | - Ignacio Moraleda
- Organic and Inorganic Chemistry Department. Ctra. Madrid-Barcelona, Km. 33, 6 University of Alcala 28871 Madrid Spain
| | - Jose Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) Juan de la Cierva, 3 28006 Madrid Spain
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hétérocycles Corps Gras et Polymères Faculté des Sciences de Sfax Université de Sfax. B. P 802.3000 Sfax Tunisie
| | - Lhassane Ismaili
- UR Neurosciences Medicinal chemistry group Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| |
Collapse
|
7
|
Dakhlaoui I, Vahdati S, Maalej E, Chabchoub F, Wiese M, Marco-Contelles J, Ismaili L. Synthesis and biological assessment of new pyrimidopyrimidines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg Chem 2021; 116:105326. [PMID: 34536930 DOI: 10.1016/j.bioorg.2021.105326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
Multidrug resistance constitutes a serious obstacle of the treatment success of cancer by chemotherapy. Mostly it is driven by expression of ABC transport proteins that actively efflux the anticancer agents out of the cell. This work describes the design and synthesis of 12 new pyrimidopyrimidines, as well as their inhibition of ABCG2 a transporter referred also to as breast cancer resistance protein, the selectivity versus ABCB1 (P-glycoprotein/P-gp) and ABCC1 as well as the investigation of their accumulation in single cells. From these results, N-(3,5-dimethoxyphenyl)-2-methyl-7-phenyl-5-(p-tolyl)pyrimido[4,5-d]pyrimidin-4-amine 7 h was identified as promising hit that deserves further investigation showing a selective and effective inhibition of ABCG2 with IC50 equal to 0.493 µM only 2-fold less active than Ko143.
Collapse
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire de Chimie Appliquée: Hetérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, Université de Sfax, B. P 802, 3000 Sfax, Tunisia; Laboratoire de Chimie Organique et Thérapeutique, Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France
| | - Sahel Vahdati
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4 53121, Bonn, Germany
| | - Emna Maalej
- Laboratoire de Chimie Appliquée: Hetérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, Université de Sfax, B. P 802, 3000 Sfax, Tunisia; Laboratoire Matériaux, Traitement et Analyse (LMTA), Institut National de Recherche et d'Analyse Physico-chimique Technopole, Ariana, Tunisia
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hetérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, Université de Sfax, B. P 802, 3000 Sfax, Tunisia.
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4 53121, Bonn, Germany.
| | - Jose Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique, Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France.
| |
Collapse
|
8
|
Grigorev VY, Rasdolsky AN, Grigoreva LD, Tinkov OV. Structural Fractal Analysis of the Active Site of Acetylcholinesterase in Complexes with Huperzine A, Galantamine, and Donepezil. Mol Inform 2021; 40:e2100127. [PMID: 34363318 DOI: 10.1002/minf.202100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/25/2021] [Indexed: 01/06/2023]
Abstract
The fractal dimension (D) of the active site of hAChE in the unliganded state and as part of complexes with hyperzine A, galantamine, and donepezil is calculated using molecular interatomic-distance histograms. Fractal matrices of structural changes (FMSCs) are formed by pairwise comparison of the values of D and by revealing the significance of their differences. FMSCs are found to be used to quantitatively estimate the changes in the structures of the molecules in various states. When analyzing FMSCs, we found that the most significant structural changes are related to the Glu202 amino acid residue. No structural perturbations are revealed in the case of Trp86, Gly122, Ala204, Phe338, Tyr341, Gly448, and Ile451.
Collapse
Affiliation(s)
- Veniamin Y Grigorev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy proezd 1, 142432, Chernogolovka, Moscow region, Russia
| | - Alexander N Rasdolsky
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy proezd 1, 142432, Chernogolovka, Moscow region, Russia
| | - Ludmila D Grigoreva
- Department of Fundamental Physical and Chemical Engineering, Moscow State University, Leninskiye Gory 1/51, 119991, Moscow, Russia
| | - Oleg V Tinkov
- Department of Computer Science, Military Institute of the Ministry of Defense, Gogol Str. 2B, 3300, Tiraspol, Transdniestria, Moldova.,Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Transnistrian State University, October 25 Str. 128, 3300, Tiraspol, Transdniestria, Moldova
| |
Collapse
|
9
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Chmielewska K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors. Curr Neuropharmacol 2021; 19:1323-1344. [PMID: 33342413 PMCID: PMC8719290 DOI: 10.2174/1570159x19666201218103434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing β-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Design, synthesis and biological assessment of acridine derivatives containing 1,3,4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorg Chem 2020; 105:104457. [PMID: 33339082 DOI: 10.1016/j.bioorg.2020.104457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
A novel series of acridine derivatives containing substituted thiadiazol-2-amine moiety was synthesized via multi-component condensation reaction of dimedone, aromatic aldehyde and 5-aryl-1,3,4-thiadiazol-2-amines in the presence of LaCl3 as a catalyst under solvent-free conditions. Anticholinesterase (AChE and BuChE) activity evaluation of the derivatives showed that all the derivatives are capable of inhibiting both enzymes and are highly selective towards AChE. Among them, the ability of 4i and 4d with respective IC50 values of 0.002 and 0.006 µM to inhibit AChE was higher than the reference compound tacrine (IC50 = 0.016 µM). The kinetics studies demonstrated that 4i and 4d inhibit AChE through a competitive/non-competitive mixed mechanism. The HEPG2 cell viability assay evidenced that 4i and 4d significantly exhibit lower hepatotoxicity compared with tacrine. Blind docking experiments performed on TcAChE (PDB ID: 2ACE) indicated that an unknown site is preferred for binding by all the derivatives over classic binding site of the enzyme, site 1 (CAS/PAS). Identification of the residues by protein structure alignment confirmed that this site is site 2 which was recently recognized as a new allosteric site of hAChE. The binding modes of 4i and 4d were also investigated using local docking studies on site 1 and site 2.
Collapse
|
11
|
Gontijo VS, Viegas FPD, Ortiz CJC, de Freitas Silva M, Damasio CM, Rosa MC, Campos TG, Couto DS, Tranches Dias KS, Viegas C. Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Curr Neuropharmacol 2020; 18:348-407. [PMID: 31631821 PMCID: PMC7457438 DOI: 10.2174/1385272823666191021124443] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil
| | - Flávia P Dias Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Matheus de Freitas Silva
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Caio Miranda Damasio
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Mayara Chagas Rosa
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Thâmara Gaspar Campos
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Dyecika Souza Couto
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | | | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| |
Collapse
|
12
|
Bautista‐Aguilera ÓM, Ismaili L, Iriepa I, Diez‐Iriepa D, Chabchoub F, Marco‐Contelles J, Pérez M. Tacrines as Therapeutic Agents for Alzheimer's Disease. V. Recent Developments. CHEM REC 2020; 21:162-174. [DOI: 10.1002/tcr.202000107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Óscar M. Bautista‐Aguilera
- Departamento de Química Orgánica and Química Inorgánica. Ctra. Madrid-Barcelona Universidad de Alcalá Km. 33, 6 28871 Madrid Spain
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique Neurosciences intégratives et cliniques EA 481 Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| | - Isabel Iriepa
- Departamento de Química Orgánica and Química Inorgánica. Ctra. Madrid-Barcelona Universidad de Alcalá Km. 33, 6 28871 Madrid Spain
- Institute of Chemical Research Andrés M. del Río Alcalá University, 28805-Alcalá de Henares Madrid Spain
| | - Daniel Diez‐Iriepa
- Departamento de Química Orgánica and Química Inorgánica. Ctra. Madrid-Barcelona Universidad de Alcalá Km. 33, 6 28871 Madrid Spain
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hétérocycles Corps Gras et Polymères Faculté des Sciences de Sfax Université de Sfax. B. P 802. 3000 Sfax Tunisie
| | - José Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) Juan de la Cierva 3 28006- Madrid Spain
| | - Marta Pérez
- Public Health Department Faculty of Medicine and Nursing University of the Basque Country. Leioa Spain
| |
Collapse
|
13
|
Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015-Present: Synthesis and Biological Activity. Int J Mol Sci 2020; 21:ijms21175965. [PMID: 32825138 PMCID: PMC7504404 DOI: 10.3390/ijms21175965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Acetylcholinesterase is an important biochemical enzyme in that it controls acetylcholine-mediated neuronal transmission in the central nervous system, contains a unique structure with two binding sites connected by a gorge region, and it has historically been the main pharmacological target for treatment of Alzheimer's disease. Given the large projected increase in Alzheimer's disease cases in the coming decades and its complex, multifactorial nature, new drugs that target multiple aspects of the disease at once are needed. Tacrine, the first acetylcholinesterase inhibitor used clinically but withdrawn due to hepatotoxicity concerns, remains an important starting point in research for the development of multitarget-directed acetylcholinesterase inhibitors. This review highlights tacrine-based, multitarget-directed acetylcholinesterase inhibitors published in the literature since 2015 with a specific focus on merged compounds (i.e., compounds where tacrine and a second pharmacophore show significant overlap in structure). The synthesis of these compounds from readily available starting materials is discussed, along with acetylcholinesterase inhibition data, relative to tacrine, and structure activity relationships. Where applicable, molecular modeling, to elucidate key enzyme-inhibitor interactions, and secondary biological activity is highlighted. Of the numerous compounds identified, there is a subset with promising preliminary screening results, which should inspire further development and future research in this field.
Collapse
|
14
|
Dorababu A. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach. Bioorg Chem 2019; 93:103299. [PMID: 31586701 DOI: 10.1016/j.bioorg.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease responsible for death of millions of people worldwide is a progressive clinical disorder which causes neurons to degenerate and ultimately die. It is one of the common causes of dementia wherein a person's incapability to independently think, behave and decline in social skills can be quoted as major symptoms. However the early signs include the simple non-clinical symptoms such as forgetting recent events and conversations. Onset of these symptoms leads to worsened conditions wherein the AD patient suffers severe memory impairment and eventually becomes unable to work out everyday tasks. Even though there is no complete cure for AD, rigorous research has been going on to reduce the progress of AD. Currently, a very few clinical drugs are prevailing for AD treatment. So this is the need of hour to design, develop and discovery of novel anti-AD drugs. The main factors for the cause of AD according to scientific research reveals structural changes in brain proteins such as beta amyloid, tau proteins into plaques and tangles respectively. The abnormal proteins distort the neurons. Despite the high potencies of the synthesized molecules; they could not get on the clinical tests up to human usage. In this review article, the recent research carried out with respect to inhibition of AChE, BuChE, NO, BACE1, MAOs, Aβ, H3R, DAPK, CSF1R, 5-HT4R, PDE, σ1R and GSK-3β is compiled and organized. The summary is focused mainly on cholinesterases, Aβ, BACE1 and MAOs classes of potential inhibitors. The review also covers structure activity relationship of most potent compounds of each class of inhibitors alongside redesign and remodeling of the most significant inhibitors in order to expect cutting edge inhibitory properties towards AD. Alongside the molecular docking studies of the some final compounds are discussed.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in Chemistry, SRMPP Govt. First Grade College, Huvinahadagali 583219, Karnataka, India.
| |
Collapse
|
15
|
Alzheimer's disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146:104316. [PMID: 31260730 DOI: 10.1016/j.phrs.2019.104316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aβ peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aβ and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.
Collapse
|
16
|
Pourshojaei Y, Abiri A, Eskandari R, Dourandish F, Eskandari K, Asadipour A. Synthesis, biological evaluation, and computational studies of novel fused six-membered O-containing heterocycles as potential acetylcholinesterase inhibitors. Comput Biol Chem 2019; 80:249-258. [PMID: 31029750 DOI: 10.1016/j.compbiolchem.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/09/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
An efficient, borax-catalyzed protocol for the synthesis of novel 4-aryl-substituted-4H-pyran derivatives fused to α-pyrone ring in a one-pot is described. By this achievement, some novel 4-aryl substituted 4H-pyrans fused to the α-pyrone ring as potential acetylcholinesterase inhibitors (AChEIs) with good to excellent yields are obtained from a one-pot three-component reaction between various aryl aldehydes, 4-hydroxy-6-methyl-2H-pyran-2-one and malononitrile. The method is a facile, inexpensive, practical and highly efficient one to obtain target compounds. The chemical structures of all compounds were characterized by FT-IR, FT-13CNMR and FT-1HNMR, MS spectroscopy and also elemental analyses data. Furthermore, the purity of all novel compounds was checked by HPLC. In addition, both molecular modelling studies and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMETox) prediction nominated all compounds as good acetylcholinesterase inhibitors to the potential treatment of Alzheimer, Parkinson and Autism diseases that among them compound 4f showed the best activity against acetylcholinesterase enzyme.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Eskandari
- Department of Computer Engineering, Faculty of Engineering and Technology, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Dourandish
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|