1
|
Hassan A, Mubarak FAF, Shehadi IA, Mosallam AM, Temairk H, Badr M, Abdelmonsef AH. Design and biological evaluation of 3-substituted quinazoline-2,4(1 H,3 H)-dione derivatives as dual c-Met/VEGFR-2-TK inhibitors. J Enzyme Inhib Med Chem 2023; 38:2189578. [PMID: 36919632 PMCID: PMC10026756 DOI: 10.1080/14756366.2023.2189578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The dual c-Met/vascular endothelial growth factor receptor 2 (VEGFR-2) TK inhibition is a good strategy to overcome therapeutic resistance to small molecules VEGFR-2 inhibitors. In this study, we designed 3-substituted quinazoline-2,4(1H,3H)-dione derivatives as dual c-Met/VEGFR-2 TK inhibitors. We introduced new synthetic methods for reported derivatives of 3-substituted quinazoline-2,4(1H,3H)-dione 2a-g, in addition to the preparation of some new derivatives namely, 3 and 4a-j. Three compounds namely, 2c, 4b, and 4e showed substantial amount of inhibition for both c-Met and VEGFR-2 TK (IC50 range 0.052-0.084 µM). Both compounds 4b, 4e showed HB with highly conserved residue Asp1222 in the HB region of c-Met TK. For VEGFR-2 TK, compound 4b showed HB with a highly conserved residue Asp1046 in the HB region. Compound 4e showed HB with Glu885 and Asp1046. Moreover, in silico prediction of pharmacokinetic and physicochemical parameters of target compounds was carried out using SwissADME website. The quinazoline-2,4(1H,3H)-dione derivatives are promising antiproliferative candidates that require further optimisation.HighlightsNew 3-substituted quinazoline-2,4(1H,3H)-dione derivatives were synthesised and characterised.Compounds 4b and 4e showed higher cytotoxic activity than cabozantinib against HCT-116 colorectal cell lines.Both compounds 4b and 4e showed less toxicity to WI38 normal cell line compared to HCT 116 colon cancer cell line.Compound 4b was superior to cabozantinib in VEGFR-2 inhibition while compound 2c was equipotent to cabozantinib.Compounds 4b and 4e showed remarkable c-Met inhibitory activity.Compounds 4b and 4e arrested cell cycle and induced significant levels of apoptosis.In silico ADME prediction revealed high oral bioavailability and enhanced water solubility of target compounds as compared to cabozantinib.Target compounds interacted with both c-Met and VEGFR-2 active site in similar way to cabozantinib.
Collapse
Affiliation(s)
- Abdelfattah Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Fawzy A F Mubarak
- Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt
| | - Ihsan A Shehadi
- Department of Chemistry, College of Sciences, Pure and Applied Chemistry Research Group, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed M Mosallam
- Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt
| | - Hussain Temairk
- Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | | |
Collapse
|
2
|
Akbari A, Zahedifar M. Synthesis of Quinazolin-4(3H)-ones via a novel approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023. [DOI: 10.1016/j.jscs.2023.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Chang D, Li Y, Chen Y, Wang X, Zang D, Liu T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. NANOSCALE ADVANCES 2022; 4:3689-3706. [PMID: 36133327 PMCID: PMC9470027 DOI: 10.1039/d2na00391k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 06/07/2023]
Abstract
Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Dening Chang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yanda Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yuxuan Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Dejin Zang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| |
Collapse
|
4
|
Nguyen HT, Nguyen Thi QG, Nguyen Thi TH, Thi PH, Le-Nhat-Thuy G, Dang Thi TA, Le-Quang B, Pham-The H, Van Nguyen T. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. RSC Adv 2022; 12:22004-22019. [PMID: 36043070 PMCID: PMC9361925 DOI: 10.1039/d2ra03312g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/20/2022] Open
Abstract
A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study. Novel podophyllotoxin-naphthoquinone derivatives with modification on ring E were synthesized. All the synthetic compounds were assessed in terms of their cytotoxicity profile against four cancer cell lines (KB, HepG2, A549, and MCF7), and noncancerous Hek-293 cell lines. Notably, treatment of SK-LU-1 cells with compounds 5a and 5b resulted in G2/M phase arrest of the cell cycle, caspase-3/7 activation, and apoptosis. Additionally, molecular docking studies were performed and showed important interaction of two compounds against residues in the colchicine-binding-site of tubulin as well. Taken together, compounds 5a and 5b were identified as potent anticancer agents. A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study.![]()
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Thu Ha Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Bao Le-Quang
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Hai Pham-The
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Tuyen Van Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| |
Collapse
|
5
|
Dung DTM, Park EJ, Anh DT, Phan DTP, Na IH, Kwon JH, Kang JS, Tung TT, Han SB, Nam NH. Design, synthesis and evaluation of novel 2-oxoindoline-based acetohydrazides as antitumor agents. Sci Rep 2022; 12:2886. [PMID: 35190616 PMCID: PMC8861050 DOI: 10.1038/s41598-022-06887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
In our search for novel small molecules activating procaspase-3, we have designed and synthesized two series of novel (E)-N'-arylidene-2-(2-oxoindolin-1-yl)acetohydrazides (4) and (Z)-2-(5-substituted-2-oxoindolin-1-yl)-N'-(2-oxoindolin-3-ylidene)acetohydrazides (5). Cytotoxic evaluation revealed that the compounds showed notable cytotoxicity toward three human cancer cell lines: colon cancer SW620, prostate cancer PC-3, and lung cancer NCI-H23. Especially, six compounds, including 4f–h and 4n–p, exhibited cytotoxicity equal or superior to positive control PAC-1, the first procaspase-3 activating compound. The most potent compound 4o was three- to five-fold more cytotoxic than PAC-1 in three cancer cell lines tested. Analysis of compounds effects on cell cycle and apoptosis demonstrated that the representative compounds 4f, 4h, 4n, 4o and 4p (especially 4o) accumulated U937 cells in S phase and substantially induced late cellular apoptosis. The results show that compound 4o would serve as a template for further design and development of novel anticancer agents.
Collapse
Affiliation(s)
- Do T M Dung
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Eun J Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Duong T Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Dung T P Phan
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Ik H Na
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Joo H Kwon
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Jong S Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Truong T Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, 12116, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
6
|
Dung DTM, Park EJ, Anh DT, Hai PT, Bao LQ, Ji AY, Kang JS, Tung TT, Han SB, Nam NH. Design, Synthesis and Evaluation of Novel (E)-N'-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides as Antitumor Agents. Anticancer Agents Med Chem 2022; 22:2586-2598. [PMID: 35040418 DOI: 10.2174/1871520622666220118154914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Herein, we have designed and synthesized a series of the novel (E)-N'-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides (5) as potent small molecules activating procaspase-3. The compounds were designed by the amalgamation of structural features of PAC-1 (the first procaspase-3 activator) and oncrasin-1, one potential anticancer agent. METHODS The target acetohydrazides (5a-m) were prepared via the Niementowski condensation of anthranilic acid (1a) or 5-substituted-2-aminobenzoic acid (1b-m) and formamide. The compound libraries were evaluated for their cytotoxicity, caspase-3 activation, cell cycle analysis, and apoptosis. In addition, computational chemistry is also performed. RESULTS A biological evaluation revealed that all thirteen compounds designed and synthesized showed strong cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer) with eight compounds (5a, 5c-i, 5k), which were clearly more potent than both PAC-1 and oncrasin-1. In this series, four compounds including 5c, 5e, 5f, and 5h, were the most potent members with approximately 4- to 5-fold stronger than the reference compounds PAC-1 and oncrasin-1 in terms of IC50. In comparison to 5-FU, these compounds were even 18- to 29-fold more potent in terms of cytotoxicity in three human cell lines tested. In the caspase activation assay, the caspase activity was activated to 285% by compound 5e in comparison to PAC-1, the first procaspase activating compound, which was used as a control. Our docking simulation revealed that compound 5e was a potent allosteric inhibitor of procaspase-3 through chelation of inhibitory zinc ion. Physicochemical and ADMET calculations for 5e provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent. CONCLUSION Compound 5e has emerged as a potential hit for further design and development of caspases activators and anticancer agents.
Collapse
Affiliation(s)
- Do Thi Mai Dung
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Chungbuk, 28160, Republic of Korea
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Le Quang Bao
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - A Young Ji
- Department of Pharmacy, Chungbuk National University, Korea
| | - Jong Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Truong Thanh Tung
- PHENIKAA Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 12116, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Chungbuk, 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| |
Collapse
|
7
|
Dung DTM, Park EJ, Anh DT, Hai PT, Huy LD, Jun HW, Kwon JH, Young Ji A, Kang JS, Tung TT, Dung PTP, Han SB, Nam NH. Design, synthesis, and evaluation of novel (E)-N'-(3-allyl-2-hydroxy)benzylidene-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides as antitumor agents. Arch Pharm (Weinheim) 2021; 355:e2100216. [PMID: 34674294 DOI: 10.1002/ardp.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
In our continuing search for novel small-molecule anticancer agents, we designed and synthesized a series of novel (E)-N'-(3-allyl-2-hydroxy)benzylidene-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides (5), focusing on the modification of substitution in the quinazolin-4(3H)-one moiety. The biological evaluation showed that all 13 designed and synthesized compounds displayed significant cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). The most potent compound 5l displayed cytotoxicity up to 213-fold more potent than 5-fluorouracil and 87-fold more potent than PAC-1, the first procaspase-activating compound. Structure-activity relationship analysis revealed that substitution of either electron-withdrawing or electron-releasing groups at positions 6 or 7 on the quinazolin-4(3H)-4-one moiety increased the cytotoxicity of the compounds, but substitution at position 6 seemed to be more favorable. In the caspase activation assay, compound 5l was found to activate the caspase activity by 291% in comparison to PAC-1, which was used as a control. Further docking simulation also revealed that this compound may be a potent allosteric inhibitor of procaspase-3 through chelation of the inhibitory zinc ion. Physicochemical and ADMET calculations for 5l provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent.
Collapse
Affiliation(s)
- Do T M Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Eun J Park
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Duong T Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Pham-The Hai
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Le D Huy
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hye W Jun
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Joo-Hee Kwon
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - A Young Ji
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jong S Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Truong T Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, Vietnam
| | - Phan T P Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
8
|
Farghaly AM, AboulWafa OM, Baghdadi HH, Abd El Razik HA, Sedra SMY, Shamaa MM. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells. Bioorg Chem 2021; 115:105208. [PMID: 34365057 DOI: 10.1016/j.bioorg.2021.105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
An array of newly synthesized thieno[3,2-d]pyrimidine-based derivatives and thienotriazolopyrimidines hybridized with some pharmacophoric anticancer fragments were designed, synthesized and assessed for their in vitro antiproliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using erlotinib and pictilisib as reference standards in the MTT assay. In general, many compounds were endowed with considerable antiproliferative activity (IC50 = 0.43-1.31 µM). Some of the tested compounds, namely 3c, 5b, 5c, 9d, 10, 11b and 13 displayed remarkable antiproliferative activity against both cell lines. Meanwhile, compounds 2c-e, 3b, 4a, 5a, 9c and 15b showed noticeable selectivity against MCF-7 cells while compounds 2b, 3a, 4b, 6a-c, 7, 8, 9b and 12 exhibited considerable selectivity against MDA-MB-231 cells. Further mechanistic evidences for their anticancer activities were provided by screening the most potent compounds against MCF-7 and/or MDA-MB-231 cells for EGFR and ARO inhibitory activities using erlotinib and letrozole as reference standards respectively. Results proved that, in general, tested compounds were better EGFRIs than ARIs. In addition, significant overexpression in caspase-9 level in treated MCF-7 breast cell line samples was observed for all tested compounds with the 4-fluorophenylhydrazone derivative 2d exhibiting the highest activation. In treated MDA-MB-231 breast cell line samples, 11b was found to highly induce caspase-9 level thereby inducing apoptosis. Cell cycle analysis and Annexin V-FITC/PI assay were also assessed for active compounds where results indicated that all tested compounds induced preG1 apoptosis and cell cycle arrest at G2/M phase. Compound 9d, as an inhibitor of ARO, was observed to downregulate the downstream signaling proteins HSP27 and p-ERK in MCF-7 cells. Furthermore, compound 11b downregulated EGFR expression as well as the downstream signaling protein p-AKT. Docking experiments on EGFR and ARO enzymes supported their in vitro results. Thus, the thienotriazolopyrimidines 11b and 12 showing good EGFR inhibition and the thieno[3,2-d]-pyrimidine derivatives 3b and 9d, eliciting the best ARO inhibition activity, can be considered as new candidates as anti-breast cancer agents that necessitate further development.
Collapse
Affiliation(s)
- Ahmed M Farghaly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Samir M Y Sedra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Marium M Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
9
|
Li B, Yao J, He F, Liu J, Lin Z, Liu S, Wang W, Wu T, Huang J, Chen K, Fang M, Chen J, Zeng JZ. Synthesis, SAR study, and bioactivity evaluation of a series of Quinoline-Indole-Schiff base derivatives: Compound 10E as a new Nur77 exporter and autophagic death inducer. Bioorg Chem 2021; 113:105008. [PMID: 34089944 DOI: 10.1016/j.bioorg.2021.105008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
We previously reported 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole- 2-carbohydrazide derivatives as new Nur77 modulators. In this study, we explored whether the 8-methoxy-2-methylquinoline moiety and bicyclic aromatic rings at the N'-methylene position were critical for their antitumor activity against hepatocellular carcinoma (HCC). For this purpose, a small library of 5-substituted 1H-indole-2-carbohydrazide derivatives was designed and synthesized. We found that the 8-methoxy-2-methylquinoline moiety was a fundamental structure for its biological function, while the introduction of the bicyclic aromatic ring into the N'-methylene greatly improved its anti-tumor effect. We found that the representative compound 10E had a high affinity to Nur77. The KD values were in the low micromolar (2.25-4.10 μM), which were coincident with its IC50 values against the tumor cell lines (IC50 < 3.78 μM). Compound 10E could induce autophagic cell death of liver cancer cells by targeting Nur77 to mitochondria while knocking down Nur77 greatly impaired anti-tumor effect. These findings provide an insight into the structure-activity relation of Quinoline-Indole-Schiff base derivatives and further demonstrate that antitumor agents targeting Nur77 may be considered as a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Baicun Li
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Department of Physiology, Peking Union Medical College, Beijing 100730, China
| | - Jie Yao
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China; Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Fengming He
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zongxin Lin
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shunzhi Liu
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Tong Wu
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiangang Huang
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Chen
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jingwei Chen
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Anh D, Hai PT, Huy LD, Ngoc HB, Ngoc TTM, Dung DTM, Park EJ, Song IK, Kang JS, Kwon JH, Tung TT, Han SB, Nam NH. Novel 4-Oxoquinazoline-Based N-Hydroxypropenamides as Histone Deacetylase Inhibitors: Design, Synthesis, and Biological Evaluation. ACS OMEGA 2021; 6:4907-4920. [PMID: 33644598 PMCID: PMC7905942 DOI: 10.1021/acsomega.0c05870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
Two series of novel 4-oxoquinazoline-based N-hydroxypropenamides (9a-m and 10a-m) were designed, synthesized, and evaluated for their inhibitory and cytotoxicity activities against histone deacetylase (HDAC). The compounds showed good to potent HDAC inhibitory activity and cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). In this series, compounds with the N-hydroxypropenamide functionality impeded at position 7 on the 4-oxoquinazoline skeleton (10a-m) were generally more potent than compounds with the N-hydroxypropenamide moiety at position 6 (9a-m). Also, the N 3-benzyl-substituted derivatives (9h-m, 10h-m) exhibited stronger bioactivity than the N 3-alkyl-substituted ones (9a-e, 10a-e). Two compounds 10l and 10m were the most potent ones. Their HDAC inhibitory activity (IC50 values, 0.041-0.044 μM) and cytotoxicity (IC50 values, 0.671-1.211 μM) were approximately 2- to 3-fold more potent than suberoylanilide hydroxamic acid (SAHA). Some compounds showed up to 10-fold more potent HDAC6 inhibition compared to their inhibitory activity in total HDAC extract assay. Analysis of selected compounds 10l and 10m revealed that these compounds strongly induced both early and late apoptosis and arrested SW620 cells at the G2/M phase. Docking studies were carried out on the HDAC6 isoform for series 10a-m and revealed some important features contributing to the inhibitory activity of synthesized compounds.
Collapse
Affiliation(s)
- Duong
T. Anh
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Pham-The Hai
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Le D. Huy
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Hoang B. Ngoc
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Trinh T. M. Ngoc
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Do T. M. Dung
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Eun J. Park
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - In K. Song
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jong S. Kang
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Joo-Hee Kwon
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Truong T. Tung
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA
Institute for Advanced Study (PIAS), PHENIKAA
University, Hanoi 12116, Vietnam
| | - Sang-Bae Han
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
- . Tel: +84-4-39330531. Fax: +84-4-39332332
| |
Collapse
|
11
|
Huan LC, Anh DT, Hai PT, Anh LD, Park EJ, Ji AY, Kang JS, Dung DTM, Oanh DTK, Tung TT, Hai DTT, Han SB, Nam NH. Design, synthesis, and evaluation of novel N'-substituted-1-(4-chlorobenzyl)-1 H-indol-3-carbohydrazides as antitumor agents. J Enzyme Inhib Med Chem 2020; 35:1854-1865. [PMID: 32981382 PMCID: PMC7534272 DOI: 10.1080/14756366.2020.1816997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In continuity of our search for novel anticancer agents acting as procaspase activators, we have designed and synthesised two series of (E)-N′-benzylidene-carbohydrazides (4a–m) and (Z)-N'-(2-oxoindolin-3-ylidene)carbohydrazides (5a–g) incorporating 1-(4-chlorobenzyl)-1H-indole core. Bioevaluation showed that the compounds, especially compounds in series 4a–m, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). Within series 4a–m, compounds with 2-OH substituent (4g–i) exhibited very strong cytotoxicity in three human cancer cell lines assayed with IC50 values in the range of 0.56–0.83 µM. In particular, two compounds 4d and 4f bearing 4-Cl and 4-NO2 substituents, respectively, were the most potent in term of cytotoxicity with IC50 values of 0.011–0.001 µM. In caspase activation assay, compounds 4b and 4f were found to activate caspase activity by 314.3 and 270.7% relative to PAC-1. This investigation has demonstrated the potential of these simple acetohydrazides, especially compounds 4b, 4d, and 4f, as anticancer agents.
Collapse
Affiliation(s)
- Le Cong Huan
- Hanoi University of Pharmacy, Hanoi, Vietnam.,Thai Binh University of Medicine and Pharmacy, Thai Binh City, Vietnam
| | | | | | - Lai Duc Anh
- Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - A Young Ji
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Jong Soon Kang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | | | | | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, Vietnam
| | | | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | | |
Collapse
|
12
|
Design, synthesis and biological evaluation of methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold: Novel potential CDK9 inhibitors. Bioorg Chem 2020; 102:104064. [DOI: 10.1016/j.bioorg.2020.104064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
|
13
|
Li B, Yao J, Guo K, He F, Chen K, Lin Z, Liu S, Huang J, Wu Q, Fang M, Zeng J, Wu Z. Design, synthesis, and biological evaluation of 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole-2-carbohydrazide derivatives as novel Nur77 modulators. Eur J Med Chem 2020; 204:112608. [PMID: 32717483 DOI: 10.1016/j.ejmech.2020.112608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Nur77 is a potential target for the treatment of cancer such as HCC. Herein, we detailed the discovery of a novel series of 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole-2-carbohydrazide derivatives as potential Nur77 modulators. The studies of antiproliferative activity and Nur77-binding affinity of target compounds resulted in the discovery of a lead candidate (10g), which was a good Nur77 binder (KD = 3.58 ± 0.16 μM) with a broad-spectrum antiproliferative activity against all tested hepatoma cells (IC50 < 2.0 μM) and was low toxic to normal LO2 cells. 10g could up-regulate Nur77 expression and mediate sub-cellular localization of Nur77 to induce apoptosis in hepatocellular carcinoma cell lines, which relied on 10g inducing Nur77-dependent autophagy and endoplasmic reticulum stress as the upstream of apoptosis. Moreover, the in vivo assays verified that 10g significantly inhibited xenograft tumor growth. These results indicate that 10g has the potential to be developed as a novel Nur77-targeting anti-hepatoma drug.
Collapse
Affiliation(s)
- Baicun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jie Yao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zongxin Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shunzhi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiangang Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaoqiong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jinzhang Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Li B, Zhu F, He F, Huang Q, Liu X, Wu T, Zhao T, Qiu Y, Wu Z, Xue Y, Fang M. Synthesis and biological evaluations of N′-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem 2020; 96:103592. [DOI: 10.1016/j.bioorg.2020.103592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
|
15
|
Huan LC, Anh DT, Truong BX, Duc PH, Hai PT, Duc-Anh L, Huong LTT, Park EJ, Lee HJ, Kang JS, Tran PT, Thanh Hai DT, Kim Oanh DT, Han SB, Nam NH. New Acetohydrazides Incorporating 2-Oxoindoline and 4-Oxoquinazoline: Synthesis and Evaluation of Cytotoxicity and Caspase Activation Activity. Chem Biodivers 2020; 17:e1900670. [PMID: 31943757 DOI: 10.1002/cbdv.201900670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
In our search for new small molecules activating procaspase-3, we have designed and synthesized a series of new acetohydrazides incorporating both 2-oxoindoline and 4-oxoquinazoline scaffolds. Biological evaluation showed that a number of these acetohydrazides were comparably or even more cytotoxic against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer) in comparison to PAC-1, a first procaspase-3 activating compound, which was used as a positive control. One of those new compounds, 2-(6-chloro-4-oxoquinazolin-3(4H)-yl)-N'-[(3Z)-5-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene]acetohydrazide activated the caspase-3 activity in U937 human lymphoma cells by 5-fold higher than the untreated control. Three of the new compounds significantly induced necrosis and apoptosis in U937 cells.
Collapse
Affiliation(s)
- Le Cong Huan
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Bui Xuan Truong
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Phan Huy Duc
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Lai Duc-Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Le-Thi-Thu Huong
- School of Medicine and Pharmacy, Hanoi National University, 144 Xuan Thuy, Hanoi, 10000, Vietnam
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hye Jin Lee
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jong Soon Kang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Phuong-Thao Tran
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Dinh Thi Thanh Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Dao Thi Kim Oanh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| |
Collapse
|
16
|
Huan LC, Tran PT, Phuong CV, Duc PH, Anh DT, Hai PT, Huong LTT, Thuan NT, Lee HJ, Park EJ, Kang JS, Linh NP, Hieu TT, Oanh DTK, Han SB, Nam NH. Novel 3,4-dihydro-4-oxoquinazoline-based acetohydrazides: Design, synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Bioorg Chem 2019; 92:103202. [DOI: 10.1016/j.bioorg.2019.103202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023]
|