1
|
Snarska J, Jakimiuk K, Strawa JW, Tomczyk TM, Tomczykowa M, Piwowarski JP, Tomczyk M. A Comprehensive Review of Pedunculagin: Sources, Chemistry, Biological and Pharmacological Insights. Int J Mol Sci 2024; 25:11511. [PMID: 39519063 PMCID: PMC11545929 DOI: 10.3390/ijms252111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pedunculagin is a widely abundant ellagitannin found in the plant kingdom, with a chemical structure featuring two hexahydroxydiphenoyl units linked to a glucose core. It has demonstrated various biological activities, including anti-cancer, anti-inflammatory, and anti-bacterial effects. This review aims to summarize the bioactivities, chemistry, and health-promoting properties of pedunculagin and plant preparations containing it. It is the first comprehensive summary covering pedunculagin's chemistry, sources, metabolism, and other relevant research. The search databases were Google Scholar, EBSCO Discovery Service, REAXYS Database, SCILIT, SCOPUS, PubMed, MEDLINE, Web of Science, Wiley Online Library, Science Direct/ELSEVIER, WordCat, and Taylor and Francis Online. All the databases were methodically searched for data published from 1911 until 2024. Various biological effects were proven in vitro for pedunculagin; however, due to the limited availability of the isolated compound, they have not been so far directly confirmed on more advanced in vivo and clinical models. However, its bioactivity can be deduced from studies conducted for plant preparations containing this ellagitannin as a dominant constituent, consequently indicating beneficial health effects. Further studies are needed to determine the molecular mechanism of action following topical application as well as the contribution of gut microbiota postbiotic metabolites- urolithins-being formed following the oral ingestion of preparations containing pedunculagin.
Collapse
Affiliation(s)
- Julia Snarska
- Student’s Scientific Association, Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.S.); (T.M.T.)
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| | - Tomasz M. Tomczyk
- Student’s Scientific Association, Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.S.); (T.M.T.)
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Medicine with the Division of Dentistry and Division of Medical Education in English, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| |
Collapse
|
2
|
Phosphorylated Peptide Derived from the Myosin Phosphatase Target Subunit Is a Novel Inhibitor of Protein Phosphatase-1. Int J Mol Sci 2023; 24:ijms24054789. [PMID: 36902219 PMCID: PMC10003451 DOI: 10.3390/ijms24054789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Identification of specific protein phosphatase-1 (PP1) inhibitors is of special importance regarding the study of its cellular functions and may have therapeutic values in diseases coupled to signaling processes. In this study, we prove that a phosphorylated peptide of the inhibitory region of myosin phosphatase (MP) target subunit (MYPT1), R690QSRRS(pT696)QGVTL701 (P-Thr696-MYPT1690-701), interacts with and inhibits the PP1 catalytic subunit (PP1c, IC50 = 3.84 µM) and the MP holoenzyme (Flag-MYPT1-PP1c, IC50 = 3.84 µM). Saturation transfer difference NMR measurements established binding of hydrophobic and basic regions of P-Thr696-MYPT1690-701 to PP1c, suggesting interactions with the hydrophobic and acidic substrate binding grooves. P-Thr696-MYPT1690-701 was dephosphorylated by PP1c slowly (t1/2 = 81.6-87.9 min), which was further impeded (t1/2 = 103 min) in the presence of the phosphorylated 20 kDa myosin light chain (P-MLC20). In contrast, P-Thr696-MYPT1690-701 (10-500 µM) slowed down the dephosphorylation of P-MLC20 (t1/2 = 1.69 min) significantly (t1/2 = 2.49-10.06 min). These data are compatible with an unfair competition mechanism between the inhibitory phosphopeptide and the phosphosubstrate. Docking simulations of the PP1c-P-MYPT1690-701 complexes with phosphothreonine (PP1c-P-Thr696-MYPT1690-701) or phosphoserine (PP1c-P-Ser696-MYPT1690-701) suggested their distinct poses on the surface of PP1c. In addition, the arrangements and distances of the surrounding coordinating residues of PP1c around the phosphothreonine or phosphoserine at the active site were distinct, which may account for their different hydrolysis rate. It is presumed that P-Thr696-MYPT1690-701 binds tightly at the active center but the phosphoester hydrolysis is less preferable compared to P-Ser696-MYPT1690-701 or phosphoserine substrates. Moreover, the inhibitory phosphopeptide may serve as a template to synthesize cell permeable PP1-specific peptide inhibitors.
Collapse
|
3
|
Fedotcheva TA, Sheichenko OP, Fedotcheva NI. New Properties and Mitochondrial Targets of Polyphenol Agrimoniin as a Natural Anticancer and Preventive Agent. Pharmaceutics 2021; 13:pharmaceutics13122089. [PMID: 34959369 PMCID: PMC8703553 DOI: 10.3390/pharmaceutics13122089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Agrimoniin is a polyphenol from the group of tannins with antioxidant and anticancer activities. It is assumed that the anticancer action of agrimoniin is associated with the activation of mitochondria-dependent apoptosis, but its mitochondrial targets have not been estimated. We examined the direct influence of agrimoniin on different mitochondrial functions, including the induction of the mitochondrial permeability transition pore (MPTP) as the primary mechanism of mitochondria-dependent apoptosis. Agrimoniin was isolated from Agrimonia pilosa Ledeb by multistep purification. The content of agrimoniin in the resulting substance reached 80%, as determined by NMR spectroscopy. The cytotoxic effect of purified agrimoniin was confirmed on the cultures of K562 and HeLa cancer cells by the MTT assay. When tested on isolated rat liver mitochondria, agrimoniin at a low concentration (10 µM) induced the low-amplitude swelling, which was inhibited by the MPTP inhibitors ADP and cyclosporine A, activated the opening of MPTP by calcium ions and stimulated the respiration supported by succinate oxidation. Also, agrimoniin reduced the electron acceptor DCPIP in a concentration-dependent manner and chelated iron ions. Owing to all these properties, agrimoniin can stimulate apoptosis or activate mitochondrial functions, which can be helpful in the prevention and elimination of stagnant pathological states.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia;
| | - Olga P. Sheichenko
- All-Russian Research Institute of Medicinal and Aromatic Plants, Gryna St. 7, Moscow 117216, Russia;
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino142290, Russia
- Correspondence:
| |
Collapse
|
4
|
Micka M, Bryja V. Can We Pharmacologically Target Dishevelled: The Key Signal Transducer in the Wnt Pathways? Handb Exp Pharmacol 2021; 269:117-135. [PMID: 34382124 DOI: 10.1007/164_2021_527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dishevelled (DVL) is the central signal transducer in both Wnt/β-catenin-dependent and independent signalling pathways. DVL is required to connect receptor complexes and downstream effectors. Since proximal Wnt pathway components and DVL itself are upregulated in many types of cancer, DVL represents an attractive therapeutic target in the Wnt-addicted cancers and other disorders caused by aberrant Wnt signalling. Here, we discuss progress in several approaches for the modulation of DVL function and hence inhibition of the Wnt signalling. Namely, we sum up the potential of modulation of enzymes that control post-translational modification of DVL - such as inhibition of DVL kinases or promotion of DVL ubiquitination and degradation. In addition, we discuss research directions that can take advantage of direct interaction with the protein domains essential for DVL function: the inhibition of DIX- and DEP-domain mediated polymerization and interaction of DVL PDZ domain with its ligands.
Collapse
Affiliation(s)
- Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
5
|
Zhou C, Wang P, Lei L, Huang Y, Wu Y. Overexpression of miR-142-5p inhibits the progression of nonalcoholic steatohepatitis by targeting TSLP and inhibiting JAK-STAT signaling pathway. Aging (Albany NY) 2020; 12:9066-9084. [PMID: 32413869 PMCID: PMC7288945 DOI: 10.18632/aging.103172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to figure out the underlying mechanism of miR-142-5p in the non-alcoholic steatohepatitis (NASH). Bioinformatics, luciferase assay and Western blot were performed. The NASH mouse model was established through feeding a high fat diet (HFD). Relative expressions of miR-142-5p, thymic stromal lymphopoietin (TSLP), inflammatory factors were detected by qRT-PCR. The injury level of liver was assessed via measurement of serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST). H&E staining and Masson's trichrome staining examine the liver fatty degeneration and fibrosis. MiR-142-5p and TSLP were differentially expressed and JAK-STAT signaling pathway was activated in the NASH group. Luciferase assay identified that TSLP was the downstream target of miR-142-5p. Through overexpression of miR-142-5p, ALT and AST in serum were inhibited, pro-inflammatory factors, liver fatty degeneration and fibrosis in liver tissues were decreased, while anti-inflammatory factors were increased. Overexpression of TSLP and JAK-STAT signaling pathway activation could reverse the effects of miR-142-5p on NASH. Taken together, overexpression of miR-142-5p could attenuate NASH progression via inhibiting TSLP and JAK-STAT pathway. MiR-142-5p might be a novel latent target for NASH therapy.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Pu Wang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Lei Lei
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Yi Huang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Yue Wu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| |
Collapse
|
6
|
Lin B, Xu J, Wang F, Wang J, Zhao H, Feng D. LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY) 2020; 12:7232-7247. [PMID: 32315985 PMCID: PMC7202499 DOI: 10.18632/aging.103072] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to reveal the hypothesis that lncRNA X inactive specific transcript (XIST) can participate in the regulation of cardiomyocyte apoptosis in neonatal mice cardiomyocytes (NMCMs) and myocardial infarction (MI) through targeting miR-101a-3p. NMCMs were isolated from neonatal C57BL/6 mice and anoxia was induced in hypoxic chamber. MTT assay and flow cytometry were used to determine proliferation and apoptosis respectively. The target relationship among XIST, miR-101a-3p and FOS was revealed by bioinformatic analysis, luciferase reporter assay, pull-down assay and RNA immunoprecipitation assay. The expression of XIST, miR-101a-3p, FOS and apoptosis-related proteins was determined by qRT-PCR or western blot. MI model was constructed to reveal the role of XIST. We found that XIST was up-regulated in NMCMs under anoxia condition. Moreover, XIST increased FOS expression by sponging miR-101a-3p in anoxia cells. Silencing XIST expression improved cell viability and suppressed apoptosis in vitro and inhibited myocardial infarction by reducing the level of c-FOS and apoptosis-related proteins in vivo. Our findings suggest that XIST is involved in MI, modulation of its level can be used as a new strategy or potential target in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Bin Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Deguang Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|