1
|
Pan B, Chen Z, Zhang X, Wang Z, Yao Y, Wu X, Qiu J, Lin H, Yu L, Tu H, Tang N. 2,5-dimethylcelecoxib alleviated NK and T-cell exhaustion in hepatocellular carcinoma via the gastrointestinal microbiota-AMPK-mTOR axis. J Immunother Cancer 2023; 11:e006817. [PMID: 37316264 DOI: 10.1136/jitc-2023-006817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND 2,5-dimethylcelecoxib (DMC), a derivative of celecoxib, is an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1). Our previous studies have demonstrated that DMC inhibits the expression of programmed death-ligand 1 on hepatocellular carcinoma (HCC) cells to prevent tumor progression. However, the effect and mechanism of DMC on HCC infiltrating immune cells remain unclear. METHODS In this study, single-cell-based high-dimensional mass cytometry was performed on the tumor microenvironment of HCC mice treated with DMC, celecoxib and MK-886 (a known mPGES-1 inhibitor). Moreover, 16S ribosomal RNA sequencing was employed to analyze how DMC improved the tumor microenvironment of HCC by remodeling the gastrointestinal microflora. RESULTS We found that (1) DMC significantly inhibited the growth of HCC and improved the prognosis of the mice, and this depended on the stronger antitumor activity of natural killer (NK) and T cells; (2) compared with celecoxib and MK-886, DMC significantly enhanced the cytotoxic and stem-like potential, and inhibited exhaustion of NK and T cells; (3) mechanistically, DMC inhibited the expression of programmed cell death protein-1 and upregulated interferon-γ expression of NK and T cells via the gastrointestinal microbiota (Bacteroides acidifaciens, Odoribacter laneus, and Odoribacter splanchnicus)-AMPK-mTOR axis. CONCLUSIONS Our study uncovers the role of DMC in improving the tumor microenvironment of HCC, which not only enriches the relationship between the mPGES-1/prostaglandin E2 pathway and the antitumor function of NK and T cells, but also provide an important strategic reference for multitarget or combined immunotherapy of HCC.Cite Now.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhanfei Chen
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, Putian, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua Lin
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, Putian, China
| | - Liumin Yu
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Haijian Tu
- School of Basic Medical Sciences, Putian University, Putian, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
2
|
Latest progress in the development of cyclooxygenase-2 pathway inhibitors targeting microsomal prostaglandin E 2 synthase-1. Future Med Chem 2022; 14:385-388. [PMID: 34985304 PMCID: PMC8905551 DOI: 10.4155/fmc-2021-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
4
|
Increased effects of 2,5-dimethylcelecoxib on sensitivity of hepatocellular carcinoma cells to sorafenib via CYP3A5 expression and activation of AMPK. Toxicol In Vitro 2021; 76:105226. [PMID: 34293431 DOI: 10.1016/j.tiv.2021.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
As the occurrence and development of HCC are often accompanied by inflammation, the combination of sorafenib with other therapeutic drugs, especially anti-inflammatory drugs, is one of the directions to be explored at present. Our previous research has been focused on the anti-inflammatory drug 2,5-dimethylcelecoxib (DMC), whether DMC combined with sorafenib could elevate the effect of inhibiting HCC deserves further exploration. In this study, we found that DMC induced CYP3A5 expression in HCC cells in a time-dependent and concentration dependent manner. We observed that sorafenib inhibited CYP3A5 expression in liver cancer cells, and activated the phosphorylation of Akt. Upregulated CYP3A5 and DMC treatment enhanced the ability of sorafenib to inhibit migration. The combination of DMC with sorafenib had a synergistic effect of enhancing drug sensitivity (CI < 1), meanwhile, inhibited the proliferation and promoted apoptosis of HCC. Activation of the AMPK pathway and inhibition of the PI3K/Akt pathway were observed in cells treated with DMC in combination with sorafenib and could be reverted by an AMPK pathway inhibitor. Our findings suggest that DMC induces CYP3A5 expression and enhances the anticancer effect of sorafenib by activating AMPK, which would be a novel strategy for drug combination to prevent drug resistance.
Collapse
|
5
|
Chen Z, Chen Y, Peng L, Wang X, Tang N. 2,5-dimethylcelecoxib improves immune microenvironment of hepatocellular carcinoma by promoting ubiquitination of HBx-induced PD-L1. J Immunother Cancer 2020; 8:jitc-2020-001377. [PMID: 33028694 PMCID: PMC7542662 DOI: 10.1136/jitc-2020-001377] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background 2,5-dimethylcelecoxib (DMC) is a targeted inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1), a key enzyme in the PGE2 synthesis pathway of inflammatory mediators. Previous studies have confirmed that DMC can inhibit the growth of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). However, it is not known whether DMC is involved in the changes of tumor immune microenvironment. Methods In this study, we explored the effects of DMC on HBV-related HCC immune microenvironment, and deeply analyzed its unique effect and mechanism on programmed death receptor 1 (PD-1)/and its ligand 1 (PD-L1) pathway. Results Clinical hepatoma tissues detection showed that compared with non-virus-related HCC, the level of CD8 of HBV-related HCC was significantly lower, while the levels of PD-L1 and CD163 were higher. In vivo experiments indicated that DMC could increase the level of tumor infiltrating CD8+ T cells in hepatitis B virus X (HBx) (+) hepatoma cells implanted mouse models, and inhibit the expression of PD-L1 and CD163 in tumor tissues. DMC combined with atezolizumab had more significant antitumor effect and stronger blocking effect on PD-1/PD-L1 pathway. Mechanism studies have shown that DMC can promote ubiquitin degradation of HBx-induced PD-L1 protein in HCC cells by activating adenosine 5′-monophosphate-activated protein kinase pathway. Further experiments confirmed that this process was mainly mediated by E3 ligase RBX1. Conclusions Our results uncover a role for DMC in promoting HBV-related HCC immune microenvironment, which not only enrich the relationship between inflammatory factors (mPGES-1/PGE2 pathway) and immunosuppression (PD-L1), but also provide an important strategic reference for multitarget or combined immunotherapy of HBV-related HCC.
Collapse
Affiliation(s)
- Zhanfei Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yiyin Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lirong Peng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China .,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
|