1
|
Ibrahim SRM, Mohamed SGA, Abdallah HM, Mohamed GA. Ethnomedicinal uses, phytochemistry, and pharmacological relevance of Justicia procumbens (Oriental Water Willow) - A promising traditional plant. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116819. [PMID: 37385576 DOI: 10.1016/j.jep.2023.116819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia procumbens L. (JP) (Oriental Water Willow, Shrimp plant, Acanthaceae) is a herbaceous plant that is commonly found in India, Taiwan, Australia, Southern China, Vietnam, and Korea. The plant has been primarily used to treat fever, asthma, edema, cough, jaundice, urinary tract infection, and sore throat, as well as for snake bites and as a fish-killer. In the present review, the reported phyto-chemical, ethno-pharmacological, biological, and toxicological studies on J. procumbens were summarized. Special focus had been given to its reported lignans, regarding their isolation, characterization, quantitative estimation, and biosynthesis. MATERIALS AND METHODS A survey of the literature was done using assorted databases and publishers; Scopus, Sci-Finder, Web of Science, PubMed, GoogleScholar, ScienceDirect, Wiley, Taylors&Francis, Bentham, Thieme, and Springer. RESULTS Currently, 95 metabolites have been separated fromJ. procumbens. Lignans and their glycosides were reported as main phyto-constituents of J. procumbens. Various methods are mentioned for quantitative estimation of these lignans. These phyto-constituents possessed wide pharmacological effectiveness, such as antiplatelet aggregation, antimicrobial, antitumor, and antiviral. CONCLUSIONS Many of the stated effects are harmonious with the reported traditional uses of this plant. This data could further support J. procumbens's utilization as a herbal remedy and drug lead. However, further study of J. procumbens toxicity, as well as preclinical and clinical investigation is required to ensure the safe usage of J. procumbens.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Wang M, Zhou Y, Jian Q, Ai Z, Zhou S. Mechanisms of Rostellularia procumbens (L.) Nees on treating chronic glomerulonephritis explored by network pharmacology, RNA-seq, and in vitro experiments. BMC Complement Med Ther 2023; 23:263. [PMID: 37488573 PMCID: PMC10367255 DOI: 10.1186/s12906-023-04079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The purpose of this study was to demonstrate the in vitro anti-nephritis activity of Rostellularia procumbens (L.) Nees (R. procumbens) extract and to make a preliminary investigation of its anti-nephritis mechanism. METHODS A prediction network was built that describes the relationship between R. procumbens and CGN. Then, the potential targets for R. procumbens against CGN were imported into the DAVID database for Gene Ontology (GO) biological annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A lipopolysaccharide (LPS)-stimulated rat mesangial cell HBZY-1 model in vitro was used to examine the anti-inflammatory activity of R. procumbens extract. RNA-seq was utilized to investigate differentially expressed genes (DEGs) and enriched signaling pathways between groups. Finally, qPCR was used for the validation analysis of the experimental results. RESULTS The results of network pharmacology showed that R. procumbens exerts its therapeutic effect on CGN through the AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt, IL-17 signaling pathway, and so on. R. procumbens n-butanol extract (J-NE) can effectively relieve inflammation in HBZY-1. The results of KEGG pathway enrichment suggest that J-NE attenuated CGN was associated with the IL-17 signaling pathway, and the results of RNA-seq were consistent with network pharmacology. Targets enriched in the IL-17 signaling pathway, including Chemokine (C-C motif) ligand 7 (CCL7), Lipocalin 2 (LCN2), Chemokine (C-C motif) ligand 2 (CCL2), and Chemokine (C-X-C motif) ligand 1 (CXCL1), have been identified as crucial targets attenuating CGN by J-NE. CONCLUSION R. procumbens is a promising pharmacological candidate for the treatment of CGN in the present era.
Collapse
Affiliation(s)
- Mengfan Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu Road (West), Hongshan District, Wuhan, Hubei Province, 430065, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu Road (West), Hongshan District, Wuhan, Hubei Province, 430065, China
| | - Qiuyuan Jian
- School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu Road (West), Hongshan District, Wuhan, Hubei Province, 430065, China
| | - Zhongzhu Ai
- School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu Road (West), Hongshan District, Wuhan, Hubei Province, 430065, China.
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Shanshan Zhou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Huangjiahu Road (West), Hongshan District, Wuhan, Hubei Province, 430065, China.
| |
Collapse
|
3
|
Ai Z, Wang M, Zhou Y, Yuan D, Jian Q, Wu S, Liu B, Yang Y. Deciphering the pharmacological mechanisms of Rostellularia procumbens (L) Nees. Extract alleviates adriamycin-induced nephropathy in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154736. [PMID: 36907143 DOI: 10.1016/j.phymed.2023.154736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Rostellularia procumbens (L) Nees. is an effective traditional Chinese herbal medicine for the treatment of patients with chronic glomerulonephritis (CGN) in the clinic. However, the underlying molecular mechanisms need further elucidation. PURPOSE This study aims to investigate the renoprotective mechanisms of n-butanol extract from Rostellularia procumbens (L) Nees. (J-NE) in vivo and in vitro. METHODS The components of J-NE were analyzed by UPLC-MS/MS. In vivo, the nephropathy model was induced in mice by tail vein injection with adriamycin (10 mg·kg-1), and mice were treated with vehicle or J-NE or benazepril by daily gavage. In vitro, MPC5 cells exposed to adriamycin (0.3 μg/ml) were treated with J-NE. The effects of J-NE inhibit podocyte apoptosis and protect against adriamycin-induced nephropathy were determined by Network pharmacology, RNA-seq, qPCR, ELISA, immunoblotting, flow cytometry, and TUNEL assay, according to the experimental protocols. RESULT The results showed that treatment significantly improved ADR-induced renal pathological changes, and the therapeutic mechanism of J-NE was related to the inhibition of podocyte apoptosis. Further molecular mechanism studies found that J-NE inhibited inflammation, increase the proteins expression levels of Nephrin and Podocin, reduce TRPC6 and Desmin expression levels and calcium ion levels in podocytes, and decrease the proteins expression levels of PI3K, p-PI3K, Akt and p-Akt to attenuated apoptosis. Furthermore, 38 compounds of J-NE were identified. CONCLUSION J-NE exerted the renoprotective effects by inhibiting podocyte apoptosis, which provides effective evidence for the treatment of J-NE targeting renal injury in CGN.
Collapse
Affiliation(s)
- Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Mengfan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Yi Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dongfeng Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qiuyuan Jian
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Songtao Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China.
| |
Collapse
|
4
|
Chen Z, Luo X, Liu M, Jiang J, Li Y, Huang Z, Wang L, Cao J, He L, Huang S, Hu H, Li L, Chen L. Elabela-apelin-12, 17, 36/APJ system promotes platelet aggregation and thrombosis via activating the PANX1-P2X7 signaling pathway. J Cell Biochem 2023; 124:586-605. [PMID: 36855998 DOI: 10.1002/jcb.30392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/31/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The elabela-apelin/angiotensin domain type 1 receptor-associated protein (APJ) system is an important regulator in certain thrombosis-related diseases such as atherosclerosis, myocardial infarction, and cerebral infarction. Our previous reports have revealed that apelin exacerbates atherosclerotic lesions. However, the relationship between the elabela-apelin/APJ system and platelet aggregation and atherothrombosis is unclear. The results of the present study demonstrate that elabela and other endogenous ligands such as apelin-12, -17, and -36 induce platelet aggregation and thrombosis by activating the pannexin1(PANX1)-P2X7 signaling pathway. Interestingly, the diuretic, spironolactone, a novel PANX1 inhibitor, alleviated elabela- and apelin isoforms-induced platelet aggregation and thrombosis. Significantly, two potential antithrombotic drugs were screened out by targeting APJ receptors, including the anti-HIV ancillary drug cobicistat and the traditional Chinese medicine monomer Schisandrin A. Both cobicistat and Schisandrin A abolished the effects of elabela and apelin isoforms on platelet aggregation, thrombosis, and cerebral infarction. In addition, cobicistat significantly attenuated thrombosis in a ponatinib-induced zebrafish trunk model. Overall, the elabela-apelin/APJ axis mediated platelet aggregation and thrombosis via the PANX1-P2X7 signaling pathway in vitro and in vivo. Blocking the APJ receptor with cobicistat/Schisandrin A or inhibiting PANX1 with spironolactone may provide novel therapeutic strategies against thrombosis.
Collapse
Affiliation(s)
- Zhe Chen
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xuling Luo
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Meiqing Liu
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jinyong Jiang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yao Li
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhen Huang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lingzhi Wang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jiangang Cao
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lu He
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shifang Huang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haoliang Hu
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Changde Research Center for Artificial Intelligence and Biomedicine, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lanfang Li
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
5
|
Reveals of candidate active ingredients in Justicia and its anti-thrombotic action of mechanism based on network pharmacology approach and experimental validation. Sci Rep 2021; 11:17187. [PMID: 34433871 PMCID: PMC8387432 DOI: 10.1038/s41598-021-96683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Thrombotic diseases seriously threaten human life. Justicia, as a common Chinese medicine, is usually used for anti-inflammatory treatment, and further studies have found that it has an inhibitory effect on platelet aggregation. Therefore, it can be inferred that Justicia can be used as a therapeutic drug for thrombosis. This work aims to reveal the pharmacological mechanism of the anti-thrombotic effect of Justicia through network pharmacology combined with wet experimental verification. During the analysis, 461 compound targets were predicted from various databases and 881 thrombus-related targets were collected. Then, herb-compound-target network and protein-protein interaction network of disease and prediction targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, Gene Ontology (GO) and pathway (KEGG) enrichment were used to further determine the association between target proteins and diseases. Finally, the expression of hub target proteins of the core component and the anti-thrombotic effect of Justicia's core compounds were verified by experiments. In conclusion, the core bioactive components, especially justicidin D, can reduce thrombosis by regulating F2, MMP9, CXCL12, MET, RAC1, PDE5A, and ABCB1. The combination of network pharmacology and the experimental research strategies proposed in this paper provides a comprehensive method for systematically exploring the therapeutic mechanism of multi-component medicine.
Collapse
|
6
|
Ourhzif EM, Pâris A, Abrunhosa-Thomas I, Ketatni EM, Chalard P, Khouili M, Daniellou R, Troin Y, Akssira M. Design, synthesis, and evaluation of cytotoxic activities of arylnaphthalene lignans and aza-analogs. Arch Pharm (Weinheim) 2021; 354:e2000479. [PMID: 33586249 DOI: 10.1002/ardp.202000479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/10/2022]
Abstract
A concise and versatile synthetic strategy for the total synthesis of arylnaphthalene lignans and aza-analogs was developed. The main objective was to develop synthetic tactics for the creation of the lactone and lactam unit that would give access to an array of synthetic, natural, and/or bioactive compounds through rather simple chemical manipulation. The flexibility and potentiality of these new processes were further illustrated by the total synthesis of retrojusticidin B (13b), justicidin C (14b), and methoxy-vitedoamine A (22a). In this study, a series of novel aryl-naphthalene lignans and aza-analogs were synthesized, and the cytotoxic activities of all compounds on cancer cell growth were evaluated. The target compounds were structurally characterized by 1 H NMR (nuclear magnetic resonance), 13 C NMR, infrared, high-resolution mass spectrometry, and X-ray crystallography. The IC50 values of these compounds on five tumor cell lines (A549, HS683, MCF-7, SK-MEL-28, and B16-F1) were obtained by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay. Five of the compounds exhibited excellent activity compared to 5-fluorouracil and etoposide against the five cell lines tested, with IC50 values ranging from 1 to 10 μM.
Collapse
Affiliation(s)
- El-Mahdi Ourhzif
- SIGMA Clermont, ICCF, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France.,Laboratoire de Chimie Physique et Chimie Bioorganique, FST, Université Hassan II Casablanca, Mohammedia, Morocco
| | - Arnaud Pâris
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans/CNRS, UMR 7311, Orléans, France
| | | | - El Mostafa Ketatni
- Laboratoire de Chimie Organique et Analytique, FST, Université Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Pierre Chalard
- SIGMA Clermont, ICCF, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, FST, Université Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans/CNRS, UMR 7311, Orléans, France
| | - Yves Troin
- SIGMA Clermont, ICCF, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Mohamed Akssira
- Laboratoire de Chimie Physique et Chimie Bioorganique, FST, Université Hassan II Casablanca, Mohammedia, Morocco
| |
Collapse
|
7
|
Zhang Y, Hong Z, Yuan Z, Wang T, Wu X, Liu B, Ai Z, Wu H, Yang Y. Extract from Rostellularia procumbens (L.) Nees Inhibits Thrombosis and Platelet Aggregation by Regulating Integrin β 3 and MAPK Pathways. ACS OMEGA 2020; 5:32123-32130. [PMID: 33344867 PMCID: PMC7745434 DOI: 10.1021/acsomega.0c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
AIM OF STUDY The main objective of this study was to investigate the antithrombotic and antiplatelet effect of the extract from Rostellularia procumbenss (L.) Nees and understand the mechanisms by which it exerts its antithrombotic and antiplatelet mechanisms. MATERIALS AND METHODS The antithrombotic effective parts (RPE) were isolated using D101 macroporous adsorption resin and potential active ingredients (JAC) were isolated using the preparative liquid-phase method. The lactate dehydrogenase kit was used to determine the toxicity of RPE and JAC to platelets. The antiadhesion effect of RPE and JAC on platelets was observed by fluorescence microscopy with rhodamine phalloidin. Antithrombotic efficacy of RPE and JAC in vivo was evaluated by establishing a rat tail thrombosis model. Contents of p-selectin, TXB2, and 6-keto-PGF1α in rat serum were measured using an enzyme-linked immunosorbent (ELISA) assay, and the rat black tail rate was measured to prove the protective effect of RPE and JAC on the tail thrombus rat model. Western blot was used for detection of serum-related proteins in the tail thrombus rat model. RESULTS The results showed that RPE had antithrombotic and antiplatelet effects. RPE and JAC have no toxicity to platelets. In vitro experiments showed that RPE and JAC had antiadhesion effects on platelets. In vivo experiments showed that RPE significantly inhibited the increase of p-selectin and TXB2 and significantly increased the content of 6-keto-PGF1α in the serum of rats. Western blot results demonstrated that RPE and JDB significantly inhibited the phosphorylation of the MAPK protein family in the platelets of rats, and RPE also significantly inhibited the phosphorylation of β3 protein. CONCLUSIONS RPE has antithrombotic and antiplatelet activity in vivo and vitro. Its mechanism may be via preventing integrin αIIbβ3 activation, which in turn leads to the inhibition of the phosphorylation of the MAPK family and further suppresses TXA2, which leads to the antithrombotic and antiplatelet effects.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zongchao Hong
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zixin Yuan
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Tianshun Wang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Xingpan Wu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
- Key Laboratory
of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
- Collaborative Innovation Center of Traditional
Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
- Key Laboratory
of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
- Collaborative Innovation Center of Traditional
Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
8
|
Network Pharmacology-based Research of Active Components of Albiziae Flos and Mechanisms of Its Antidepressant Effect. Curr Med Sci 2020; 40:123-129. [PMID: 32166674 DOI: 10.1007/s11596-020-2155-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Albiziae Flos (AF) has been experimentally proven to have an antidepressant effect. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of action of AF in depression has not been completely deciphered. This study used the network pharmacology method to construct a component-target-pathway network to explore the active components and potential mechanisms of action of AF. The methods included collection and screening of chemical components, prediction of depression-associated targets of the active components, gene enrichment, and network construction and analysis. Quercetin and 4 other active components were found to exert antidepressant effects mainly via monoaminergic neurotransmitters and cAMP signaling and neuroactive ligand-receptor interaction pathways. DRD2, HTR1A, and SLC6A4 were identified as important targets of the studied bioactive components of AF. This network pharmacology analysis provides guidance for further study of the antidepressant mechanism of AF.
Collapse
|